
Problema J218. Prove that in any triangle with sides of lenghts a, b, c,
circumradius R, and inradius r, the following inequality holds
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Let s be the semi-perimeter and let ∆ be the area of triangle. According to
the well known identities

S =
√
s(s− a)(s− b)(s− c), r =

S

s
, R =

abc

4S

we get
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so the required inequality equivals to
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Using the Ravi transformation a = y + z, b = x+ z, c = x+ y our inequality
rewrites as
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Therefore it is enough to prove that
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which follows immediately from AM-GM inequality since
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This ends the proof. Equality holds for a = b = c. �
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