Problema J218. Prove that in any triangle with sides of lenghts a, b, c,
circumradius R, and inradius r, the following inequality holds
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Let s be the semi-perimeter and let A be the area of triangle. According to
the well known identities
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so the required inequality equivals to
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Using the Ravi transformation a = y+ 2, b = x + 2z, ¢ = x +y our inequality
rewrites as
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Therefore it is enough to prove that

2yz/(x +y)(x + 2)+2x2/(x + y)(y + 2)+2xy+/ (x + 2)(y + 2) < dwyz+(o+y) (y+2)(2+)

which follows immediately from AM-GM inequality since
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This ends the proof. Equality holds for a = b = c. O



