Problema J218. Prove that in any triangle with sides of lenghts a, b, c, circumradius R, and inradius r, the following inequality holds

$$
\frac{\sqrt{a b}}{a+b-c}+\frac{\sqrt{b c}}{b+c-a}+\frac{\sqrt{c a}}{c+a-b} \leq 1+\frac{R}{r}
$$

Proposed by Cezar Lupu, University of Pittsburgh, USA, and Virgil Nicula, Bucharest,Romania

Solution by Ercole Suppa, Teramo, Italy

Let s be the semi-perimeter and let Δ be the area of triangle. According to the well known identities

$$
S=\sqrt{s(s-a)(s-b)(s-c)}, \quad r=\frac{S}{s}, \quad R=\frac{a b c}{4 S}
$$

we get

$$
1+\frac{R}{r}=1+\frac{2 a b c}{(a+b-c)(b+c-a)(a+c-b)}
$$

so the required inequality equivals to

$$
\frac{\sqrt{a b}}{a+b-c}+\frac{\sqrt{b c}}{b+c-a}+\frac{\sqrt{c a}}{c+a-b} \leq 1+\frac{2 a b c}{(a+b-c)(b+c-a)(a+c-b)}
$$

Using the Ravi transformation $a=y+z, b=x+z, c=x+y$ our inequality rewrites as
$\frac{y z \sqrt{(x+y)(x+z)}+x z \sqrt{(x+y)(y+z)}+x y \sqrt{(x+z)(y+z)}}{2 x y z} \leq 1+\frac{(x+y)(y+z)(z+x)}{4 x y z}$
Therefore it is enough to prove that
$2 y z \sqrt{(x+y)(x+z)}+2 x z \sqrt{(x+y)(y+z)}+2 x y \sqrt{(x+z)(y+z)} \leq 4 x y z+(x+y)(y+z)(z+x)$
which follows immediately from AM-GM inequality since

$$
\begin{aligned}
& 2 y z \sqrt{(x+y)(x+z)}+2 x z \sqrt{(x+y)(y+z)}+2 x y \sqrt{(x+z)(y+z)} \\
\leq & y z(2 x+y+z)+x z(x+2 y+z)+x y(x+y+2 z) \\
= & 4 x y z+(x+y)(y+z)(z+x)
\end{aligned}
$$

This ends the proof. Equality holds for $a=b=c$.

