Problema J219. Trying to solve a problem, Jimmy used the following "formula": $\log _{a b} x=\log _{a} x \log _{b} x$, where a, b, x are positive real numbers different from 1. Prove that this is correct only if x is a solution to the equation $\log _{a} x+\log _{b} x=1$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Setting $u=\log _{a b} x, v=\log _{a} x, w=\log _{b} x$ we have

$$
\begin{array}{ll}
\log _{a b} x=\log _{a} x \log _{b} x & \Leftrightarrow \\
x=(a b)^{u}=a^{u} b^{u}=a^{v w} b^{v w}=\left(a^{v}\right)^{w}\left(b^{w}\right)^{v}=x^{w} x^{v}=x^{v+w} & \Leftrightarrow \\
v+w=1 & \Leftrightarrow \\
\log _{a} x+\log _{b} x=1 & \Leftrightarrow
\end{array}
$$

and the result is proved.

