Problema J222. Give a ruler and straightedge construction of a triangle $A B C$ given its orthocenter and the intersection points of the internal and external angle bisectors of one of its angles with the corresponding opposite side.

Proposed by Cosmin Pohoata, Princeton University, USA
Solution by Ercole Suppa, Teramo, Italy
Analysis. Let $A B C$ be the required triangle and denote by D, E the intersection points of the internal and external angle bisectors of $\angle B A C$ with $B C$. Let H be the orthocenter of $A B C$ and draw a figure in order to find some relation between the given elements and the unknown parts.

Observe that the vertices B, C lie on the line $D E$, whereas the vertex A is the meeting point of the line through H perpendicular to $D E$ with the circle having for diameter $D E$ (since $A E$ and $A D$ are perpendicular).

Let O be the circumcentre of $\triangle A B C$ and note that $\angle B A H=90^{\circ}-B=$ $\angle O A C$, so $\angle H A D=\angle D A O$. Therefore O belong to the line symmetric of $A H$ with respect to $A D$.

Let H^{\prime} be the symmetric of H with respect to $D E$. It is well known that H^{\prime} lies on the circumcircle (O). Hence O belong to the mediator of segment $A H^{\prime}$.

The vertices B, C are the intersection points of (O) with $D E$.
Construction. The vertices A, B, C of the required triangle can be constructed in the following way:

- draw the line $D E$;
- draw the circle γ having for diameter $D E$;
- draw the line r perpendicular to $D E$ through H;
- construct the point $A=r \cap \gamma$;
- draw the line s symmetric of r wrt $A D$;
- construct the point H^{\prime} symmetric of H wrt $D E$;
- draw the line a mediator of the segment $A H^{\prime}$;
- construct the point $O=a \cap s$;
- draw the circle ω through A and having center O;
- construct the points $\{B, C\}=\omega \cap D E$.

