Problema J236. Let ABC be a triangle and let ABRS and ACXY be the two squares constructed on sides AB and AC which are directed towards the exterior of the triangle. If U is the circumcenter of triangle SAY, prove that the line AU is the A-symmedian of triangle ABC.

Proposed by Cosmin Pohoata, Princeton University, USA

Solution by Ercole Suppa, Teramo, Italy

Let $a=BC,\ b=CA,\ c=AB,$ let $A,\ B,\ C$ be the three angles of $\triangle ABC,$ let $N=AU\cap BC$ and denote by M the midpoint of BC. Let $x=\angle BAN,$ $y=\angle MAC,\ z=\angle SAU,\ u=\angle ASY$ and $v=\angle AYS$ as shown in figure.

By using the Sine Law we get

$$1 = \frac{BM}{MC} = \frac{AB}{AC} \cdot \frac{\sin \angle BAM}{\sin \angle MAC} \qquad \Leftrightarrow \\ c\sin(A - y) = b\sin y \qquad \Leftrightarrow \\ c\sin A\cos y - c\cos A\sin y = b\sin y \qquad \Leftrightarrow \\ c\sin A\cos y - c\cos A\tan y = b\tan y$$

hence

$$\tan y = \frac{c \sin A}{b + c \cos A} \tag{1}$$

Applying the Sine Law in triangle $\triangle SAY$ yields

$$\frac{AS}{\sin v} = \frac{AY}{\sin u} \qquad \Leftrightarrow \\ c\sin u = b\sin v \qquad \Leftrightarrow \\ c\sin(A - v) = b\sin v \qquad \Leftrightarrow \\ c\sin A\cos v - c\cos A\sin v = b\sin v \qquad \Leftrightarrow \\ c\sin A\cos y - c\cos A\tan v = b\tan v$$

hence

$$\tan v = \frac{c \sin A}{b + c \cos A} \tag{2}$$

From (1) and (2) it follows that v = y. On the other hand clearly we have

$$x = 90^{\circ} - z = 90^{\circ} - (90^{\circ} - v) = v$$

Therefore x=y and this means that AU is the A-symmedian of triangle ABC, as required. \Box