Problema J236. Let $A B C$ be a triangle and let $A B R S$ and $A C X Y$ be the two squares constructed on sides $A B$ and $A C$ which are directed towards the exterior of the triangle. If U is the circumcenter of triangle $S A Y$, prove that the line $A U$ is the A-symmedian of triangle $A B C$.

Proposed by Cosmin Pohoata, Princeton University, USA
Solution by Ercole Suppa, Teramo, Italy

Let $a=B C, b=C A, c=A B$, let A, B, C be the three angles of $\triangle A B C$, let $N=A U \cap B C$ and denote by M the midpoint of $B C$. Let $x=\angle B A N$, $y=\angle M A C, z=\angle S A U, u=\angle A S Y$ and $v=\angle A Y S$ as shown in figure.

By using the Sine Law we get

$$
\begin{array}{ll}
1=\frac{B M}{M C}=\frac{A B}{A C} \cdot \frac{\sin \angle B A M}{\sin \angle M A C} & \Leftrightarrow \\
c \sin (A-y)=b \sin y & \Leftrightarrow \\
c \sin A \cos y-c \cos A \sin y=b \sin y & \Leftrightarrow \\
c \sin A \cos y-c \cos A \tan y=b \tan y &
\end{array}
$$

hence

$$
\begin{equation*}
\tan y=\frac{c \sin A}{b+c \cos A} \tag{1}
\end{equation*}
$$

Applying the Sine Law in triangle $\triangle S A Y$ yields

$$
\begin{array}{ll}
\frac{A S}{\sin v}=\frac{A Y}{\sin u} & \Leftrightarrow \\
c \sin u=b \sin v & \Leftrightarrow \\
c \sin (A-v)=b \sin v & \Leftrightarrow \\
c \sin A \cos v-c \cos A \sin v=b \sin v & \Leftrightarrow \\
c \sin A \cos y-c \cos A \tan v=b \tan v &
\end{array}
$$

hence

$$
\begin{equation*}
\tan v=\frac{c \sin A}{b+c \cos A} \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that $v=y$. On the other hand clearly we have

$$
x=90^{\circ}-z=90^{\circ}-\left(90^{\circ}-v\right)=v
$$

Therefore $x=y$ and this means that $A U$ is the A-symmedian of triangle $A B C$, as required.

