Problema J237. Prove that the diameter of the incircle of a triangle $A B C$ is equal to $\frac{A B-B C+C A}{\sqrt{3}}$ if and only if $\angle B A C=60^{\circ}$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

It is well known that $r=(s-a) \tan \frac{A}{2}$ where as usual r, s denote the inradius and the semiperimeter of $\triangle A B C$ with sidelengths a, b, c. Therefore the diameter of the incircle of $\triangle A B C$ is equal to $\frac{A B-B C+C A}{\sqrt{3}}$ if and only if

$$
\begin{array}{rlrl}
2(s-a) \tan \frac{A}{2} & =\frac{b+c-a}{\sqrt{3}} & & \Leftrightarrow \\
(b+c-a) \tan \frac{A}{2} & =\frac{b+c-a}{\sqrt{3}} & \Leftrightarrow \\
\tan \frac{A}{2} & =\frac{1}{\sqrt{3}} & \Leftrightarrow \\
\tan A=\frac{2 \tan \frac{A}{2}}{1-\tan ^{2} \frac{A}{2}} & =\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}=\sqrt{3} & \Leftrightarrow \\
\angle B A C & =60^{\circ} & & \Leftrightarrow
\end{array}
$$

