Problem 338. Sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfies $a_{0}=1, b_{0}=0$ and for $n=0,1,2, \ldots$

$$
\begin{aligned}
a_{n+1} & =7 a_{n}+6 b_{n}-3 \\
b_{n+1} & =8 a_{n}+7 b_{n}-4
\end{aligned}
$$

Prove that a_{n} is a perfect square for all $n=0,1,2, \ldots$.
Solution by Ercole Suppa, Teramo, Italy. By getting b_{n} from the first equation and replacing it into the second one, we have

$$
\begin{equation*}
a_{n+2}=14 a_{n+1}-a_{n}-6, \quad n=0,1,2, \ldots \tag{}
\end{equation*}
$$

with $a_{0}=1, a_{1}=4$. Now, consider the sequence $\left\{c_{n}\right\}$ of positive integers, defined by $c_{0}=1, c_{1}=2$ and

$$
\begin{equation*}
c_{n+2}=4 c_{n+1}-c_{n}, \quad n=0,1,2, \ldots \tag{**}
\end{equation*}
$$

Solving (*) and (**) we get

$$
\begin{gathered}
a_{n}=\frac{1}{4}\left[2+(7-4 \sqrt{3})^{n}+(7+4 \sqrt{3})^{n}\right] \\
c_{n}=\frac{1}{2}\left[(2-\sqrt{3})^{n}+(2+\sqrt{3})^{n}\right]
\end{gathered}
$$

from which easily follows that $a_{n}=c_{n}^{2}$ for all $n=0,1,2, \ldots$, proving the desired result.

