Problem 338. Sequences $\{a_n\}$ and $\{b_n\}$ satisfies $a_0=1,\ b_0=0$ and for $n=0,1,2,\ldots$

$$a_{n+1} = 7a_n + 6b_n - 3$$
$$b_{n+1} = 8a_n + 7b_n - 4$$

Prove that a_n is a perfect square for all $n = 0, 1, 2, \ldots$

Solution by Ercole Suppa, Teramo, Italy. By getting b_n from the first equation and replacing it into the second one, we have

$$a_{n+2} = 14a_{n+1} - a_n - 6, \qquad n = 0, 1, 2, \dots$$
 (*)

with $a_0=1,\ a_1=4.$ Now, consider the sequence $\{c_n\}$ of positive integers, defined by $c_0=1,\ c_1=2$ and

$$c_{n+2} = 4c_{n+1} - c_n, \qquad n = 0, 1, 2, \dots$$
 (**)

Solving (*) and (**) we get

$$a_n = \frac{1}{4} \left[2 + \left(7 - 4\sqrt{3} \right)^n + \left(7 + 4\sqrt{3} \right)^n \right]$$

$$c_n = \frac{1}{2} \left[\left(2 - \sqrt{3} \right)^n + \left(2 + \sqrt{3} \right)^n \right]$$

from which easily follows that $a_n=c_n^2$ for all $n=0,1,2,\ldots$, proving the desired result.