An inequality for the excircles of a triangle

October 2009
1829. Proposed by Oleh Faynshteyn, Leipzig, Germany.

Let $A B C$ be a triangle with $B C=a, C A=b$, and $A B=c$. Let r_{a} denote the radius of the excircle tangent to $B C, r_{b}$ the radius of the excircle tangent to $C A$, and r_{c} the radius of the excircle tangent to $A B$. Prove that

$$
\frac{r_{a} r_{b}}{(a+b)^{2}}+\frac{r_{b} r_{c}}{(b+c)^{2}}+\frac{r_{c} r_{a}}{(c+a)^{2}} \leq \frac{9}{16}
$$

I. Solution by Ercole Suppa, Teramo, Italy.

Let $\Delta=\operatorname{Area}(A B C)$ and $s=(a+b+c) / 2$. Taking into account the identities $r_{a}=\Delta /(s-a), r_{b}=\Delta /(s-b), r_{c}=\Delta /(s-c)$, as well as Heron's formula $\Delta=$ $\sqrt{s(s-a)(s-b)(s-c)}$, the inequality in the problem becomes

$$
\begin{array}{rlrl}
\frac{s(s-c)}{(a+b)^{2}}+\frac{s(s-a)}{(b+c)^{2}}+\frac{s(s-c)}{(c+a)^{2}} & \leq \frac{9}{16} & \Leftrightarrow \\
\frac{(a+b)^{2}-c^{2}}{(a+b)^{2}}+\frac{(b+c)^{2}-a^{2}}{(b+c)^{2}}+\frac{(c+a)^{2}-b^{2}}{(c+a)^{2}} & \leq \frac{9}{4} & \Leftrightarrow \\
\frac{a^{2}}{(b+c)^{2}}+\frac{b^{2}}{(a+c)^{2}}+\frac{c^{2}}{(a+b)^{2}} & \geq \frac{3}{4} \tag{1}
\end{array}
$$

Now, by using Nesbitt's inequality

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2}
$$

and the well known inequality $3\left(x^{2}+y^{2}+z^{2}\right) \geq(x+y+z)^{2}$ we get

$$
\begin{aligned}
\left(\frac{a}{b+c}\right)^{2}+\left(\frac{b}{c+a}\right)^{2}+\left(\frac{c}{a+b}\right)^{2} & \geq \frac{1}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)^{2} \geq \\
& \geq \frac{1}{3}\left(\frac{3}{2}\right)^{2}=\frac{3}{4}
\end{aligned}
$$

and (1) is proved. The equality holds if and only if $a=b=c$.

