
Problema A2. Suppose that ABCD is a quadrilateral which circumscribes
the circle (O). The tangential points of (O) with AB, BC, CD, DA are M , N ,
P , Q respectively. The perpendicular line with MN through M cuts PQ at I.
The perpendicular line with MQ through M cuts PN at J . Prove that AI‖BJ .

Proposed by Hoang Quoc Khanh, Vinh Phuc highschool for Gifted students,
Vinh Phuc province.

Solution by Ercole Suppa, Teramo, Italy

First we prove the following lemma:

Lemma. Let ABC be a triangle inscribed in the circle (O). Let X be an
arbitrary point on AB and Y = OX ∩ AC. Let t be the tangent at A to the
circumcircle. The lines through O parallel to AB and AC intersect t at U , V
respectively. Prove that UX‖V Y .

Proof. Let D = AB ∩OU , E = AC ∩OV and F = AB ∩ V Y .
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Figure 1

Taking into account the equality of the opposite sides of the parallelogram
ADOE and the similarity 4UDA ∼ 4AEV , 4DXO ∼ 4EOY , we have:
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Therefore the triangles 4DUX and 4EY V are similar, hence

∠UXD = ∠EV Y = ∠AFY

and the proof of the lemma is complete. �
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Coming back to the problem denote R = MI ∩ (O) and S = MJ ∩ (O) as
shown in Figure 2.
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Figure 2

We can notice that QS ∩ RN = O because ∠QMS = ∠RMN = 90◦, so
the Pascal theorem applied to the hexagon QPNRMS yields that I, O, J are
collinear. Thus the result follows at once from the Lemma applied to the triangle
4MRS since AO‖MS, BO‖MR. �
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