Problema A2. Suppose that $A B C D$ is a quadrilateral which circumscribes the circle (O). The tangential points of (O) with $A B, B C, C D, D A$ are M, N, P, Q respectively. The perpendicular line with $M N$ through M cuts $P Q$ at I. The perpendicular line with $M Q$ through M cuts $P N$ at J. Prove that $A I \| B J$.

Proposed by Hoang Quoc Khanh, Vinh Phuc highschool for Gifted students, Vinh Phuc province.

Solution by Ercole Suppa, Teramo, Italy
First we prove the following lemma:

Lemma. Let $A B C$ be a triangle inscribed in the circle (O). Let X be an arbitrary point on $A B$ and $Y=O X \cap A C$. Let t be the tangent at A to the circumcircle. The lines through O parallel to $A B$ and $A C$ intersect t at U, V respectively. Prove that $U X \| V Y$.

Proof. Let $D=A B \cap O U, E=A C \cap O V$ and $F=A B \cap V Y$.

Figure 1
Taking into account the equality of the opposite sides of the parallelogram $A D O E$ and the similarity $\triangle U D A \sim \triangle A E V, \triangle D X O \sim \triangle E O Y$, we have:

$$
\frac{U D}{D X}=\frac{U D}{A D} \cdot \frac{A D}{D X}=\frac{A E}{E V} \cdot \frac{E O}{D X}=\frac{A E}{E V} \cdot \frac{E Y}{D O}=\frac{A E}{E V} \cdot \frac{E Y}{A E}=\frac{E Y}{E V}
$$

Therefore the triangles $\triangle D U X$ and $\triangle E Y V$ are similar, hence

$$
\angle U X D=\angle E V Y=\angle A F Y
$$

and the proof of the lemma is complete.

Coming back to the problem denote $R=M I \cap(O)$ and $S=M J \cap(O)$ as shown in Figure 2.

Figure 2
We can notice that $Q S \cap R N=O$ because $\angle Q M S=\angle R M N=90^{\circ}$, so the Pascal theorem applied to the hexagon $Q P N R M S$ yields that I, O, J are collinear. Thus the result follows at once from the LEMMA applied to the triangle $\triangle M R S$ since $A O\|M S, B O\| M R$.

