
Problema A3. Given ABC is a triangle with `a, `b, `c are the bisectors of
A, B, C respectively. Provethat the following inequality holds
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Let s = a+b+c
2 . From the well known formula of the angle bisector we have
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and similar inequalities hold for `b, `c. Thus from AM-QM inequality we get
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Therefore, in order to demonstrate the proposed inequality, is enough to prove
that
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WLOG we can assume that a + b + c = 1. Then the inequality (*) becomes
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The inequality (**) follows directly from Jensen’s inequality, because the func-
tion:
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So the proof is complete. �

Remark. The inequality (**) can be proved also by means of classic in-
equalities, in the following way. By Cauchy-Schwartz inequality we have
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Thus, taking into account the inequality between harmonic and arithmetic
means, we get:
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and (**) is proven.

1


