Problema A3. Given $A B C$ is a triangle with $\ell_{a}, \ell_{b}, \ell_{c}$ are the bisectors of A, B, C respectively. Provethat the following inequality holds

$$
\frac{a+b}{\ell_{a}+\ell_{b}}+\frac{b+c}{\ell_{b}+\ell_{c}}+\frac{c+a}{\ell_{c}+\ell_{a}} \geq 2 \sqrt{3}
$$

Proposed by Nguyen Duy Khanh, Student of Mathematical Developed Training Program, Ha Noi University of Science.

Solution by Ercole Suppa, Teramo, Italy

Let $s=\frac{a+b+c}{2}$. From the well known formula of the angle bisector we have

$$
\ell_{a}=\frac{2 b c}{b+c} \cos \frac{A}{2}=\frac{2 b c}{b+c} \sqrt{\frac{s(s-a)}{b c}} \leq \frac{2 \sqrt{b c}}{b+c} \sqrt{s(s-a)} \leq \sqrt{s(s-a)}
$$

and similar inequalities hold for ℓ_{b}, ℓ_{c}. Thus from AM-QM inequality we get

$$
\begin{aligned}
\ell_{a}+\ell_{b} & \leq \sqrt{s(s-a)}+\sqrt{s(s-b)} \leq 2 \sqrt{\frac{s(s-a)+s(s-b)}{2}} \leq \\
& \leq \sqrt{2 s(2 s-a-b)}=\sqrt{(a+b+c) c}
\end{aligned}
$$

Therefore, in order to demonstrate the proposed inequality, is enough to prove that

$$
\begin{equation*}
\frac{a+b}{\sqrt{(a+b+c) c}}+\frac{b+c}{\sqrt{(a+b+c) a}}+\frac{c+a}{\sqrt{(a+b+c) b}} \geq 2 \sqrt{3} \tag{}
\end{equation*}
$$

WLOG we can assume that $a+b+c=1$. Then the inequality $\left(^{*}\right)$ becomes

$$
\begin{equation*}
\frac{1-a}{\sqrt{a}}+\frac{1-b}{\sqrt{b}}+\frac{1-c}{\sqrt{c}} \geq 2 \sqrt{3} \tag{**}
\end{equation*}
$$

The inequality $\left({ }^{* *}\right)$ follows directly from Jensen's inequality, because the function:

$$
f(x)=\frac{1-x}{\sqrt{x}}
$$

is convex on $[0,1]$ since:

$$
f^{\prime \prime}(x)=\frac{x+3}{4 x \sqrt{x}} \geq 0 \quad, \quad \forall x \in(0,1]
$$

So the proof is complete.
Remark. The inequality $\left({ }^{* *}\right)$ can be proved also by means of classic inequalities, in the following way. By Cauchy-Schwartz inequality we have

$$
\sqrt{a}+\sqrt{b}+\sqrt{b} \leq \sqrt{1+1+1} \sqrt{a+b+c}=\sqrt{3}
$$

Thus, taking into account the inequality between harmonic and arithmetic means, we get:

$$
\begin{aligned}
\frac{1-a}{\sqrt{a}}+\frac{1-b}{\sqrt{b}}+\frac{1-c}{\sqrt{c}} & =\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}-(\sqrt{a}+\sqrt{b}+\sqrt{b}) \geq \\
& \geq \frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{b}}-(\sqrt{a}+\sqrt{b}+\sqrt{b}) \geq \\
& \geq \frac{9}{\sqrt{3}}-\sqrt{3}=2 \sqrt{3}
\end{aligned}
$$

and $\left({ }^{* *}\right)$ is proven.

