MathContest - Problem 3. Let m_{a}, m_{b}, m_{c} and R be the medians and the circum-radius of a triangle $A B C$. Prove that

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)}
$$

is a positive integer and determine its value.
Solution by Ercole Suppa, Teramo, Italy
By using the Apollonius's formula

$$
m_{a}=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}}
$$

and its analogs we have

$$
\begin{equation*}
m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right) \tag{1}
\end{equation*}
$$

On the other hand the extended sine law yields $a=2 R \sin A, b=2 R \sin B$, $c=2 R \sin C$. Therefore

$$
\begin{equation*}
R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right) \tag{2}
\end{equation*}
$$

From (1) and (2) it follows

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)}=3
$$

and the problem is solved.

