Problema O115. Numbers 1 through 24 are written on a board. At any time, numbers a, b, c may be replaced by

$$
\frac{2 b+2 c-a}{3}, \frac{2 c+2 a-b}{3}, \quad \frac{2 a+2 b-c}{3}
$$

Can a number greater than 70 eventually appear on the board?
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Let $S_{n}=\left\{x_{1}^{(n)}, \ldots, x_{24}^{(n)}\right\}$ be the numbers written on the board after n iterations. For any three real numbers a, b, c we have

$$
\left(\frac{2 b+2 c-a}{3}\right)^{2}+\left(\frac{2 c+2 a-b}{3}\right)^{2}+\left(\frac{2 a+2 b-c}{3}\right)^{2}=a^{2}+b^{2}+c^{2}
$$

Therefore the function

$$
I(n)=\max \left\{a^{2}+b^{2}+c^{2} \mid a, b, c \in S_{n}\right\}
$$

is an invariant, i.e. $I(n)$ does not change during the whole process. Since

$$
I(1)=22^{2}+23^{2}+24^{2}=1589
$$

a number greater than 70 can not appear on the board (after n steps) because we would have

$$
I(n) \geq 70^{2}=4900>1589
$$

This is a contradiction and the result follows.

