Problema O118. Solve in positive integers the equation

$$
x^{2}+y^{2}+z^{2}-x y-y z-z x=w^{2}
$$

Proposed by Titu Andreescu, University of Texas at Dallas and Dorin Andrica, Babes-Bolyai University, Romania

Solution by Ercole Suppa, Teramo, Italy
We use the following
Lemma. All integral solutions of the diophantine equation

$$
x^{2}+x y+y^{2}=z^{2}
$$

are given by

$$
\left\{\begin{array}{l}
x=k\left(n^{2}+2 m n\right) \\
y=k\left(m^{2}-n^{2}\right) \\
z=k\left(m^{2}+n^{2}+m n\right)
\end{array} \quad, \quad\left\{\begin{array}{l}
x=k\left(m^{2}-n^{2}\right) \\
y=k\left(n^{2}+2 m n\right) \\
z=k\left(m^{2}+n^{2}+m n\right)
\end{array}\right.\right.
$$

where $k, m, n \in \mathbb{Z}$.
Proof. The proof can be found in the book: Titu Andreescu and Dorin Andrica, An introduction to diophantine equations.

Coming back to the problem, the given equation can be written in the form:

$$
\begin{equation*}
(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=2 w^{2} \tag{1}
\end{equation*}
$$

By setting $X=x-z, Y=y-z$ the equation (1) rewrites as

$$
\begin{aligned}
X^{2}+Y^{2}+(X+Y)^{2} & =2 w^{2} \\
X^{2}+X Y+Y^{2} & =w^{2}
\end{aligned}
$$

By the Lemma there are $k, m, n \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
X=k\left(n^{2}+2 m n\right) \\
Y=k\left(m^{2}-n^{2}\right) \\
w=k\left(m^{2}+n^{2}+m n\right)
\end{array} \quad, \quad\left\{\begin{array}{l}
X=k\left(m^{2}-n^{2}\right) \\
Y=k\left(n^{2}+2 m n\right) \\
w=k\left(m^{2}+n^{2}+m n\right)
\end{array}\right.\right.
$$

By solving the system

$$
\left\{\begin{array}{l}
x-y=X \\
y-z=Y \\
z-x=-X-Y
\end{array}\right.
$$

we get $x=X+Y+h, y=Y+h, z=h$, where $h \in \mathbb{Z}$. Thus the positive integers solutions of the our equation, up to permutations of x, y, z, are given by:

$$
\left\{\begin{array}{l}
x=k\left(m^{2}+2 m n\right)+h \\
y=k\left(m^{2}-n^{2}\right)+h \\
z=h \\
w=k\left(m^{2}+n^{2}+m n\right)
\end{array} \quad, \quad\left\{\begin{array}{l}
x=k\left(m^{2}-n^{2}\right)+h \\
y=k\left(n^{2}+2 m n\right)+h \\
z=h \\
w=k\left(m^{2}+n^{2}+m n\right)
\end{array}\right.\right.
$$

where $h, k, m, n \in \mathbb{N}_{0}, m>n$.

