Problema 0123. Let $A B C$ be a triangle and let A_{1}, B_{1}, C_{1} be the points of tangency of its incircle ω with triangle's sides. Medians $A_{1} M, B_{1} N, C_{1} P$ in triangle $A_{1} B_{1} C_{1}$ intersect ω at A_{2}, B_{2}, C_{2} respectively. Prove that $A A_{2}, B B_{2}$, $C C_{2}$ are concurrent at the isogonal conjugate of the Gergonne point Γ.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
We begin by proving the following
Lemma. The tangents at the extremities of a chord $P Q$ of a circle ω meet at A; any line through A cuts the circle at B, C, where A and C lie on opposite sides of line $P Q$; the line through C and the mid-point M of $P Q$ intersects ω again in D. Then the lines $A B, A D$ are isogonal conjugates.

Proof.
Let O be the center of ω and $R=A B \cap P Q$.
Claim 1. $P Q$ bisects angle $\angle B M C$. (Fig. 1)
Proof. Since $A O \perp P Q$ it is enough to prove that $\angle B M A=\angle C M O$.

Fig. 1
By Euclid and the Power of a Point theorems we have

$$
A O \cdot A M=A P^{2}=A B \cdot A C
$$

Thus the quadrilateral $B M O C$ is cyclic and, since $O B=O C$, we get

$$
\angle B M A=180^{\circ}-\angle B M O=\angle B C O=\angle C B O=\angle C M O
$$

establishing the claim.
Claim 2. The points B, M, E are collinear. (Fig. 2)
Proof.

Fig. 2
By Claim 1 we have

$$
\angle B M P=\angle P M C \quad, \quad \angle D M Q=\angle Q M E
$$

Since $\angle P M C=\angle D M Q$ we get $\angle B M P=\angle Q M E$, which proves our claim.
Claim 3. $\angle C A M=\angle E A M$. (Fig. 3)
Proof. Let us consider triangles $\triangle A B M$ and $\triangle A D M$.

Fig. 3
The Claim 1 yields

$$
\angle P M B=\angle P M C=\angle D M Q \quad \Rightarrow \quad \angle A M B=\angle A M D
$$

and, since B, C, E, D are concyclic, we have

$$
\angle C B E=\angle C D E \quad \Rightarrow \quad \angle A B M=\angle A D M
$$

Then we get $\angle C A M=\angle E A M$ and the the LEMMA is proven.

Now by using the LEMMA we can easily solve the given problem. (Fig. 4)

Fig. 4
In fact the pairs of lines $A A_{1}$ and $A A_{2}, B B_{1}$ and $B B_{2}, C C_{1}$ and $C C_{2}$, are isogonal conjugate and since $A A_{1}, B B_{1}, C C_{1}$ are concurrent at the Gergonne point Γ, the lines $A A_{2}, B B_{2}, C C_{2}$ are concurrent too at the point Γ^{\prime} isogonal conjugate of Γ (due to a well known result). This ends the proof.

