Problema O123. Let ABC be a triangle and let A_1 , B_1 , C_1 be the points of tangency of its incircle ω with triangle's sides. Medians A_1M , B_1N , C_1P in triangle $A_1B_1C_1$ intersect ω at A_2 , B_2 , C_2 respectively. Prove that AA_2 , BB_2 , CC_2 are concurrent at the isogonal conjugate of the Gergonne point Γ .

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

We begin by proving the following

LEMMA. The tangents at the extremities of a chord PQ of a circle ω meet at A; any line through A cuts the circle at B, C, where A and C lie on opposite sides of line PQ; the line through C and the mid-point M of PQ intersects ω again in D. Then the lines AB, AD are isogonal conjugates.

Proof. Let O be the center of ω and $R = AB \cap PQ$.

Claim 1. PQ bisects angle $\angle BMC$. (FIG. 1) Proof. Since $AO \perp PQ$ it is enough to prove that $\angle BMA = \angle CMO$.

By Euclid and the Power of a Point theorems we have

 $AO \cdot AM = AP^2 = AB \cdot AC$

Thus the quadrilateral BMOC is cyclic and, since OB = OC, we get

$$\angle BMA = 180^{\circ} - \angle BMO = \angle BCO = \angle CBO = \angle CMO$$

establishing the claim.

Claim 2. The points B, M, E are collinear. (FIG. 2) Proof.

By Claim 1 we have

$$\angle BMP = \angle PMC \quad , \quad \angle DMQ = \angle QME$$

Since $\angle PMC = \angle DMQ$ we get $\angle BMP = \angle QME$, which proves our claim.

Claim 3. $\angle CAM = \angle EAM$. (FIG. 3) Proof. Let us consider triangles $\triangle ABM$ and $\triangle ADM$.

The Claim 1 yields

 $\angle PMB = \angle PMC = \angle DMQ \quad \Rightarrow \quad \angle AMB = \angle AMD$

and, since B, C, E, D are concyclic, we have

 $\angle CBE = \angle CDE \qquad \Rightarrow \qquad \angle ABM = \angle ADM$

Then we get $\angle CAM = \angle EAM$ and the the LEMMA is proven.

Now by using the LEMMA we can easily solve the given problem. (FIG. 4)

In fact the pairs of lines AA_1 and AA_2 , BB_1 and BB_2 , CC_1 and CC_2 , are isogonal conjugate and since AA_1 , BB_1 , CC_1 are concurrent at the Gergonne point Γ , the lines AA_2 , BB_2 , CC_2 are concurrent too at the point Γ' isogonal conjugate of Γ (due to a well known result). This ends the proof.