Problema 0124. Let $S(n)$ be the number of pairs of positive integers (x, y) such that $x y=n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
\sum_{d \mid n} S(d)=\tau\left(n^{2}\right)
$$

where $\tau(s)$ is the number of divisors of s
Proposed by Dorin andrica, Babes-Bolyai University and Mihai Piticar, Campulung Moldovenesc, Romania

Solution by Ercole Suppa, Teramo, Italy
For notational convenience denote, for every $n \in \mathbb{N}$:

$$
\Omega(n)=\left\{(x, y) \in \mathbb{N}^{2} \mid x y=n, \operatorname{gcd}(x, y)=1\right\} \quad, \quad f(n)=\sum_{d \mid n} S(d)
$$

in such a way that $S(n)=|\Omega(n)|$.
Claim 1: If p is a prime number and $\alpha \in \mathbb{N}$ then $S\left(p^{\alpha}\right)=2$.
Proof. From $\Omega\left(p^{\alpha}\right)=\left\{\left(p^{\alpha}, 1\right),\left(1, p^{\alpha}\right)\right\}$ follows $S\left(p^{\alpha}\right)=\left|\Omega\left(p^{\alpha}\right)\right|=2$.
Claim 2: If p is a prime number and α, m are relatively prime positive integers, then $S\left(p^{\alpha} \cdot m\right)=2 \cdot S(m)$.

Proof. Let us denote

$$
A=\left\{\left(p^{\alpha} x, y\right) \mid(x, y) \in \Omega(n)\right\} \quad, \quad B=\left\{\left(x, p^{\alpha} y\right) \mid(x, y) \in \Omega(n)\right\}
$$

Clearly $|A|=|B|=|\Omega(m)|, A \cap B=\emptyset$ and $A \cup B=\Omega\left(p^{\alpha} \cdot m\right)$, so by sum rule

$$
S\left(p^{\alpha} \cdot m\right)=\left|\Omega\left(p^{\alpha} \cdot m\right)\right|=|A|+|B|=2 \cdot|\Omega(m)|=2 \cdot S(m)
$$

Claim 3: If p is a prime number and α, m are positive integers with $\operatorname{gcd}(p, m)=$ 1 , then $f\left(p^{\alpha} \cdot m\right)=(2 \alpha+1) f(m)$.

Proof. If $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ are the divisors of m, by using the Claim 2, we have:

$$
\begin{aligned}
f\left(p^{\alpha} \cdot m\right) & =\sum_{d \mid p^{\alpha} \cdot m} S(d)=\sum_{i=1}^{k} S\left(d_{i}\right)+\sum_{i=1}^{k} S\left(p \cdot d_{i}\right)+\cdots+\sum_{i=1}^{k} S\left(p^{\alpha} \cdot d_{i}\right)= \\
& =f(m)+2 \cdot f(m)+\cdots+2 \cdot f(m)=(1+\underbrace{2+\cdots+2}_{\alpha \text { times }}) f(m)= \\
& =(2 \alpha+1) f(m)
\end{aligned}
$$

Consider now any positive integer n and suppose that its prime factorization is

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}
$$

Then the Claim 3 yields

$$
\begin{aligned}
\sum_{d \mid n} S(d)=f(n) & =f\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot p_{k}^{\alpha_{k}}\right)= \\
& =\left(2 \alpha_{1}+1\right) f\left(p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{k}^{\alpha_{k}}\right)= \\
& \vdots \\
& =\left(2 \alpha_{1}+1\right)\left(2 \alpha_{2}+1\right) \cdots\left(2 \alpha_{k}+1\right)
\end{aligned}
$$

On the other hand, since $n^{2}=p_{1}^{2 \alpha_{1}} p_{2}^{2 \alpha_{2}} \cdots p_{k}^{2 \alpha_{k}}$, the number of divisors of n^{2} is

$$
\tau\left(n^{2}\right)=\left(2 \alpha_{1}+1\right)\left(2 \alpha_{2}+1\right) \cdots\left(2 \alpha_{k}+1\right)
$$

establishing the desired result.

