
Problema O125. Let a, b, c be positive real numbers. Prove that
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Without loss of generality we may assume abc = 1, since the right expression
is homogeneous. The inequality becomes
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By AM-GM inequality we have
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After setting (a + b)(b + c)(c + a) = x3, the inequality (1) yields
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since x ≥ 0. This ends the proof. Equality holds for a = b = c. �
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