Problema 0125. Let a, b, ¢ be positive real numbers. Prove that
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Proposed by Pham Huu Duc, Ballajura, Australia

Solution by Ercole Suppa, Teramo, Italy

Without loss of generality we may assume abc = 1, since the right expression
is homogeneous. The inequality becomes
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By AM-GM inequality we have
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After setting (a + b)(b + ¢)(c + a) = 23, the inequality (1) yields
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since > 0. This ends the proof. Equality holds for a = b = c. |



