Problema O125. Let a, b, c be positive real numbers. Prove that

$$
4 \leq \frac{a+b+c}{\sqrt[3]{a b c}}+\frac{8 a b c}{(a+b)(b+c)(c+a)}
$$

Proposed by Pham Huu Duc, Ballajura, Australia
Solution by Ercole Suppa, Teramo, Italy
Without loss of generality we may assume $a b c=1$, since the right expression is homogeneous. The inequality becomes

$$
a+b+c+\frac{8}{(a+b)(b+c)(c+a)}-4 \geq 0
$$

By AM-GM inequality we have

$$
\begin{equation*}
a+b+c=\frac{(a+b)+(b+c)+(c+a)}{2} \geq \frac{3}{2} \sqrt[3]{(a+b)(b+c)(c+a)} \tag{1}
\end{equation*}
$$

After setting $(a+b)(b+c)(c+a)=x^{3}$, the inequality (1) yields

$$
\begin{aligned}
& a+b+c+\frac{8}{(a+b)(b+c)(c+a)}-4 \geq \\
\geq & \frac{3}{2} \sqrt[3]{(a+b)(b+c)(c+a)}+\frac{8}{(a+b)(b+c)(c+a)}-4= \\
= & \frac{3}{2} x+\frac{8}{x^{3}}-4=\frac{(-2+x)^{2}\left(4+4 x+3 x^{2}\right)}{2 x^{3}} \geq 0
\end{aligned}
$$

since $x \geq 0$. This ends the proof. Equality holds for $a=b=c$.

