Problema O145. Find all positive integers n for which

$$
\left(1^{4}+\frac{1}{4}\right)\left(2^{4}+\frac{1}{4}\right) \cdots\left(n^{4}+\frac{1}{4}\right)
$$

is the square of a rational number.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

By using the Sophie Germain identity

$$
\begin{aligned}
a^{4}+4 b^{4} & =a^{4}+4 a^{2} b^{2}+4 b^{4}-4 a^{2} b^{2}=\left(a^{2}+2 b^{2}\right)^{2}-(2 a b)^{2} \\
& =\left(a^{2}+2 b^{2}-2 a b\right)\left(a^{2}+2 b^{2}+2 a b\right) \\
& =\left[(a-b)^{2}+b^{2}\right]\left[(a+b)^{2}+b^{2}\right]
\end{aligned}
$$

the given expression can be written in the following form

$$
\begin{aligned}
f(n) & =\left(1^{4}+\frac{1}{4}\right)\left(2^{4}+\frac{1}{4}\right) \cdots\left(n^{4}+\frac{1}{4}\right) \\
& =\frac{1}{4^{n}}\left(1^{4}+4 \cdot 1^{4}\right)\left(1^{4}+4 \cdot 2^{4}\right) \cdots\left(1^{4}+4 \cdot n^{4}\right) \\
& =\frac{1}{4^{n}}\left(0^{2}+1^{2}\right)\left(2^{2}+1^{2}\right)\left(1^{2}+2^{2}\right)\left(3^{2}+2^{2}\right) \cdots\left((n-1)^{2}+n^{2}\right)\left((n+1)^{2}+n^{2}\right)
\end{aligned}
$$

from which easily follows that

$$
\begin{equation*}
f(n)=q_{n}^{2}\left(2 n^{2}+2 n+1\right) \tag{1}
\end{equation*}
$$

where q_{n} is a rational number (this can be proved by induction).
From (1) it follows that $f(n)$ is the square of a rational number if and only if $2 n^{2}+2 n+1$ is a square. Therefore, it remains only to find the integer solutions to the diophantine equation

$$
\begin{equation*}
2 n^{2}+2 n+1=y^{2} \quad \Leftrightarrow \quad(2 n+1)^{2}-y^{2}=-1 \tag{2}
\end{equation*}
$$

By setting $2 n+1=x$ the equation (2) rewrites as

$$
\begin{equation*}
x^{2}-2 y^{2}=-1 \tag{3}
\end{equation*}
$$

In order to solve (3), we need the following result, whose proof can be found in a number theory book which deals with Pell's equation theory.

Theorem. Every positive solution of the equation $x^{2}-2 y^{2}=-1$ is given by $\left(x_{k}, y_{k}\right)$, where x_{k} and y_{k} are the integers determined from

$$
x_{k}+y_{k} \sqrt{2}=(1+\sqrt{2})^{2 k-1}
$$

where k in a natural number.

Thanks to the above theorem, all the solutions $\left(x_{k}, y_{k}\right)$ of equation (3) are given by

$$
\begin{align*}
& x_{k}=\frac{1}{2}\left[(1+\sqrt{2})^{2 k-1}+(1-\sqrt{2})^{2 k-1}\right] \tag{4}\\
& y_{k}=\frac{1}{2}\left[(1+\sqrt{2})^{2 k-1}-(1-\sqrt{2})^{2 k-1}\right] \tag{5}
\end{align*}
$$

By using (4) and Mathematica, taking into account of $n=\frac{x-1}{2}$, we found the first twelve solutions of (3):
$0,3,20,119,696,4059,23660,137903,803760,4684659,27304196,159140519$

Remark. The solutions $\left(x_{k}, y_{k}\right)$ of equation (3) satisfy the recursive relation

$$
\begin{aligned}
x_{k+1}+y_{k+1} \sqrt{2} & =(1+\sqrt{2})^{2 k+1}=(1+\sqrt{2})^{2 k-1}(1+\sqrt{2})^{2} \\
& =x_{k}+y_{k} \sqrt{2}(3+2 \sqrt{2})=3 x_{k}+4 y_{k}+\left(2 x_{k}+3 y_{k}\right) \sqrt{2}
\end{aligned}
$$

Therefore we have

$$
\left\{\begin{array}{l}
x_{k+1}=3 x_{k}+4 y_{k} \\
y_{k+1}=2 x_{k}+3 y_{k}
\end{array} \quad \Rightarrow \quad x_{k+2}=6 x_{k+1}-x_{k}\right.
$$

with $x_{1}=1$ and $y_{1}=1$. Since $n=\frac{x-1}{2}$, a little calculation show that the solutions n_{k} of our problem satisfy the recursive relation

$$
n_{k+2}=6 n_{k+1}-n_{k}+2
$$

with initial conditions $n_{1}=0$ and $n_{2}=3$.

