Problema O145. Find all positive integers n for which

$$\left(1^4 + \frac{1}{4}\right)\left(2^4 + \frac{1}{4}\right)\cdots\left(n^4 + \frac{1}{4}\right)$$

is the square of a rational number.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

By using the Sophie Germain identity

$$a^{4} + 4b^{4} = a^{4} + 4a^{2}b^{2} + 4b^{4} - 4a^{2}b^{2} = (a^{2} + 2b^{2})^{2} - (2ab)^{2}$$
$$= (a^{2} + 2b^{2} - 2ab) (a^{2} + 2b^{2} + 2ab)$$
$$= [(a - b)^{2} + b^{2}] [(a + b)^{2} + b^{2}]$$

the given expression can be written in the following form

$$f(n) = \left(1^4 + \frac{1}{4}\right) \left(2^4 + \frac{1}{4}\right) \cdots \left(n^4 + \frac{1}{4}\right)$$

$$= \frac{1}{4^n} \left(1^4 + 4 \cdot 1^4\right) \left(1^4 + 4 \cdot 2^4\right) \cdots \left(1^4 + 4 \cdot n^4\right)$$

$$= \frac{1}{4^n} \left(0^2 + 1^2\right) \left(2^2 + 1^2\right) \left(1^2 + 2^2\right) \left(3^2 + 2^2\right) \cdots \left((n-1)^2 + n^2\right) \left((n+1)^2 + n^2\right)$$

from which easily follows that

$$f(n) = q_n^2 \left(2n^2 + 2n + 1 \right) \tag{1}$$

where q_n is a rational number (this can be proved by induction).

From (1) it follows that f(n) is the square of a rational number if and only if $2n^2 + 2n + 1$ is a square. Therefore, it remains only to find the integer solutions to the diophantine equation

$$2n^2 + 2n + 1 = y^2$$
 \Leftrightarrow $(2n+1)^2 - y^2 = -1$ (2)

By setting 2n + 1 = x the equation (2) rewrites as

$$x^2 - 2y^2 = -1 (3)$$

In order to solve (3), we need the following result, whose proof can be found in a number theory book which deals with Pell's equation theory.

THEOREM. Every positive solution of the equation $x^2 - 2y^2 = -1$ is given by (x_k, y_k) , where x_k and y_k are the integers determined from

$$x_k + y_k \sqrt{2} = \left(1 + \sqrt{2}\right)^{2k-1}$$

where k in a natural number.

Thanks to the above theorem, all the solutions (x_k, y_k) of equation (3) are given by

$$x_k = \frac{1}{2} \left[\left(1 + \sqrt{2} \right)^{2k-1} + \left(1 - \sqrt{2} \right)^{2k-1} \right] \tag{4}$$

$$y_k = \frac{1}{2} \left[\left(1 + \sqrt{2} \right)^{2k-1} - \left(1 - \sqrt{2} \right)^{2k-1} \right]$$
 (5)

By using (4) and MATHEMATICA, taking into account of $n = \frac{x-1}{2}$, we found the first twelve solutions of (3):

 $0, 3, 20, 119, 696, 4059, 23660, 137903, 803760, 4684659, 27304196, 159140519 \quad \Box$

Remark. The solutions (x_k, y_k) of equation (3) satisfy the recursive relation

$$x_{k+1} + y_{k+1}\sqrt{2} = \left(1 + \sqrt{2}\right)^{2k+1} = \left(1 + \sqrt{2}\right)^{2k-1} \left(1 + \sqrt{2}\right)^2$$
$$= x_k + y_k\sqrt{2}\left(3 + 2\sqrt{2}\right) = 3x_k + 4y_k + (2x_k + 3y_k)\sqrt{2}$$

Therefore we have

$$\begin{cases} x_{k+1} = 3x_k + 4y_k \\ y_{k+1} = 2x_k + 3y_k \end{cases} \Rightarrow x_{k+2} = 6x_{k+1} - x_k$$

with $x_1=1$ and $y_1=1$. Since $n=\frac{x-1}{2}$, a little calculation show that the solutions n_k of our problem satisfy the recursive relation

$$n_{k+2} = 6n_{k+1} - n_k + 2$$

with initial conditions $n_1 = 0$ and $n_2 = 3$.