Problema O147. Let H be the orthocenter of an acute triangle $A B C$, and let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of sides $B C, C A, A B$. Denote by A_{1} and A_{2} the intersections of circle $C\left(A^{\prime}, A^{\prime} H\right)$ with side $B C$. In the same way we define points B_{1}, B_{2} and C_{1}, C_{2}, respectively. Prove that points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}$, C_{2} are concyclic.

Proposed by Catalin Barbu, Bacau, Romania
Solution by Ercole Suppa, Teramo, Italy

Let $\gamma_{a}, \gamma_{b}, \gamma_{c}$ be the circles with centers $A^{\prime}, B^{\prime}, C^{\prime}$ and radii $A^{\prime} H, B^{\prime} H, C^{\prime} H$ respectively. Denote by K the second intersection point of γ_{b} and γ_{c}, besides H.

Since $B^{\prime} C^{\prime} \| B C$ and $A H \perp B C$ we have $A H \perp B^{\prime} C^{\prime}$. Thus $A H$ is the radical axis of γ_{b} and γ_{c}, so $K \in A H$. The power of a point theorem implies

$$
A B_{1} \cdot A B_{2}=A H \cdot A K=A C_{1} \cdot A C_{2}
$$

so the points $B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic. Since the axes of $B_{1} B_{2}$ and $C_{1} C_{2}$ intersect at the circumcenter O of $\triangle A B C$, it follows that $B_{1}, B_{2}, C_{1}, C_{2}$ lies on the circle with center O and radius $O B_{1}$.

Similarly, we can prove that $B_{1}, B_{2}, A_{1}, A_{2}$ lies on the circle with center O and radius $O B_{1}$. Therefore $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic and the proof is complete.

