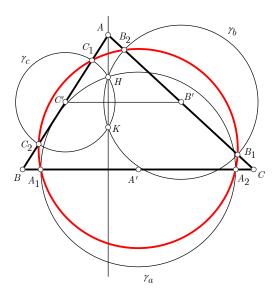
Problema O147. Let H be the orthocenter of an acute triangle ABC, and let A', B', C' be the midpoints of sides BC, CA, AB. Denote by A_1 and A_2 the intersections of circle C(A', A'H) with side BC. In the same way we define points B_1 , B_2 and C_1 , C_2 , respectively. Prove that points A_1 , A_2 , B_1 , B_2 , C_1 , C_2 are concyclic.

Proposed by Catalin Barbu, Bacau, Romania

Solution by Ercole Suppa, Teramo, Italy



Let γ_a , γ_b , γ_c be the circles with centers A', B', C' and radii A'H, B'H, C'H respectively. Denote by K the second intersection point of γ_b and γ_c , besides H.

Since $B'C' \parallel BC$ and $AH \perp BC$ we have $AH \perp B'C'$. Thus AH is the radical axis of γ_b and γ_c , so $K \in AH$. The power of a point theorem implies

$$AB_1 \cdot AB_2 = AH \cdot AK = AC_1 \cdot AC_2$$

so the points B_1 , B_2 , C_1 , C_2 are concyclic. Since the axes of B_1B_2 and C_1C_2 intersect at the circumcenter O of $\triangle ABC$, it follows that B_1 , B_2 , C_1 , C_2 lies on the circle with center O and radius OB_1 .

Similarly, we can prove that B_1 , B_2 , A_1 , A_2 lies on the circle with center O and radius OB_1 . Therefore A_1 , A_2 , B_1 , B_2 , C_1 , C_2 are concyclic and the proof is complete. \square