Problema S109. Solve the system of equations

$$
\sqrt{x}-\frac{1}{y}=\sqrt{y}-\frac{1}{z}=\sqrt{z}-\frac{1}{x}=\frac{7}{4}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy
Adding the three equations we obtain:

$$
\begin{gather*}
\sqrt{x}+\sqrt{y}+\sqrt{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{21}{4} \quad \Rightarrow \\
(\sqrt{x}-2) f(x)+(\sqrt{y}-2) f(y)+(\sqrt{z}-2) f(z)=0 \tag{1}
\end{gather*}
$$

where

$$
f(t)=\frac{2+\sqrt{t}+4 t}{4 t}>0, \quad \forall t>0
$$

Now $\sqrt{x} \geq 2$. In fact if $\sqrt{x}<2$ then

$$
\begin{gathered}
x<4 \quad \Rightarrow \\
\sqrt{z}=\frac{1}{x}+\frac{7}{4}>\frac{1}{4}+\frac{7}{4}=2 \quad \Rightarrow \\
\sqrt{y}=\frac{1}{z}+\frac{7}{4}<\frac{1}{4}+\frac{7}{4}=2 \quad \Rightarrow \\
\sqrt{x}=\frac{1}{y}+\frac{7}{4}>\frac{1}{4}+\frac{7}{4}=2
\end{gathered}
$$

which is impossible. Similarly $\sqrt{y}<2$ or $\sqrt{z}<2$ leads to contradiction. Thus

$$
\sqrt{x}-2 \geq 0 \quad, \quad \sqrt{y}-2 \geq 0 \quad, \quad \sqrt{z}-2 \geq 0
$$

Therefore, since $f(x) \geq 0, f(y) \geq 0, f(z) \geq 0$ from (1) follows that:

$$
\sqrt{x}=\sqrt{y}=\sqrt{z}=2 \quad \Rightarrow \quad x=y=z=4
$$

and we are done.

