Problema S110. Let X be a point on the side $B C$ of a triangle $A B C$. The parallel through X to $A B$ meets $C A$ at V and the parallel through X to $A C$ meets $A B$ at W. Let $D=B V \cap X W$ and $E=C W \cap X V$. Prove that $D E$ is parallel to $B C$ and

$$
\frac{1}{D E}=\frac{1}{B X}+\frac{1}{C X}
$$

Proposed by Francisco Javier García Capitán, Spain

Solution by Ercole Suppa, Teramo, Italy
We denote $A B=c, B C=a, C A=b, B X=x$ and $X C=y$.

From the similarities $\triangle A C W \sim \triangle V C E$ and $\triangle W C B \sim \triangle E C X$ follows that:

$$
\begin{aligned}
& A W: V E=W C: E C \\
& W B: E X=W C: E C
\end{aligned}
$$

and this implies:

$$
\begin{equation*}
A W: V E=W B: E X \quad \Longrightarrow \quad A W: W B=V E: E X \tag{1}
\end{equation*}
$$

The similarity $\triangle A B V \sim \triangle W B D$ yields:

$$
\begin{equation*}
A B: W B=V B: D B \quad \Longrightarrow \quad A W: W B=V D: D B \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain:

$$
V E: E X=V D: D B
$$

Thus $\triangle V D E$ and $\triangle V B X$ are similar, so $D E \| B C$ and

$$
D E: B X=V E: V X=A W=A B \quad \Longrightarrow \quad D E=\frac{A W \cdot B X}{A B}
$$

Now we notice that:

$$
\begin{equation*}
B W: B X=A B: B C \quad \Longrightarrow \quad B W=\frac{A B \cdot B X}{B C}=\frac{c x}{a} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
A W=A B-B W=c-\frac{c x}{a}=\frac{c}{a}(a-x)=\frac{c y}{a} \tag{4}
\end{equation*}
$$

Finally, by replacing $B W$ and $A W$ with (3) and (4), we have:

$$
D E=\frac{\frac{c y}{a} \cdot x}{c}=\frac{x y}{a}=\frac{x y}{x+y} \quad \Longrightarrow \quad \frac{1}{D E}=\frac{1}{x}+\frac{1}{y}=\frac{1}{B X}+\frac{1}{C X}
$$

as desidered.

