Problema S114. Consider triangle $A B C$ with angle bisectors $A A_{1}, B B_{1}$, $C C_{1}$. Denote by U the intersection of $A A_{1}$ and $B_{1} C_{1}$. Let V be the projection from U onto $B C$. Let W be the intersection of the angle bisectors of $\angle B C_{1} V$ and $\angle C B_{1} V$. Prove that A, V, W are collinear.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Denote as usual by a, b, c, R the sides $B C, C A, A B$ and the circumradius of $\triangle A B C$, respectively. Let X, W_{1} be the points where the the angle bisector of $\angle B C_{1} V$ intersects $B C, A V$ and let Y, W_{2} be the points where the the angle bisector of $\angle V B_{1} C$ intersects $B C, A V$ (refere to Figure 1). In order to complete the proof is enough to show that $W_{1}=W_{2}$.

Figure 1
Applying Menelaus's theorem to triangle $\triangle A B V$ and the line $X C_{1} W_{1}$, and taking into account that $B X: X V=C_{1} B: C_{1} V$ (internal bisector theorem), we have:

$$
\begin{equation*}
\frac{A C_{1}}{C_{1} B} \cdot \frac{C_{1} B}{C_{1} V} \cdot \frac{V W_{1}}{W_{1} A}=1 \tag{1}
\end{equation*}
$$

In similar way applying Menelaus's theorem to triangle $\triangle A V C$ and the line $Y B_{1} W_{2}$, and taking into account that $V Y: Y C=B_{1} V: B_{1} C$, we have:

$$
\begin{equation*}
\frac{A B_{1}}{B_{1} C} \cdot \frac{B_{1} C}{B_{1} V} \cdot \frac{V W_{2}}{W_{2} A}=1 \tag{2}
\end{equation*}
$$

From (1), (2) follows that:

$$
\begin{equation*}
\frac{A C_{1}}{C_{1} V} \cdot \frac{V W_{1}}{W_{1} A}=\frac{A B_{1}}{B_{1} V} \cdot \frac{V W_{2}}{W_{2} A} \tag{3}
\end{equation*}
$$

In order to compute the ratio $\frac{C_{1} V}{B_{1} V}$, we draw the perpendiculars from C_{1}, B_{1} to $B C$ and denote with C_{2}, B_{2} the projections of C_{1}, B_{1}, respectively.

Figure 2
Using the Thales theorem and the well known relations $A C_{1}=\frac{b c}{a+b}, B C_{1}=$ $\frac{a c}{a+b}, A B_{1}=\frac{b c}{a+c}, C B_{1}=\frac{a b}{a+c}$ we have:

$$
\begin{align*}
& \frac{C_{1} C_{2}}{B_{1} B_{2}}=\frac{B C_{1} \sin B}{C B_{1} \sin C}=\frac{\frac{a c}{a+b} \frac{2 R}{a}}{\frac{a b}{a+c} \frac{2 R}{b}}=\frac{a+c}{a+b} \tag{4}\\
& \frac{C_{2} V}{V B_{2}}=\frac{C_{1} U}{U B_{1}}=\frac{A C_{1}}{A B_{1}}=\frac{\frac{b c}{a+b}}{\frac{b c}{a+c}}=\frac{a+c}{a+b} \tag{5}
\end{align*}
$$

From (4), (5) follows that:

$$
\begin{equation*}
\frac{C_{1} C_{2}}{B_{1} B_{2}}=\frac{C_{2} V}{V B_{2}} \tag{6}
\end{equation*}
$$

Thus the right triangles $\triangle C_{1} C_{2} V, \triangle B_{1} B_{2} V$ are similar, so:

$$
\begin{equation*}
\frac{C_{1} V}{B_{1} V}=\frac{C_{2} V}{V B_{2}}=\frac{C_{1} U}{U B_{1}}=\frac{A C_{1}}{A B_{1}} \tag{7}
\end{equation*}
$$

From (3), (7) follows that

$$
\frac{V W_{1}}{W_{1} A}=\frac{V W_{2}}{W_{2} A} \quad \Longrightarrow \quad W_{1}=W_{2}
$$

and the proof is completed.

