Problema S117. Let a, b, c be positive real numbers. Prove that

$$
\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{3 a b c}{2(a b+b c+c a)^{2}} \geq \frac{5}{a+b+c}
$$

Proposed by Shamil Asgarli, Burnaby, Canada
Solution by Ercole Suppa, Teramo, Italy
The inequality between the harmonic and arithmetic means implies

$$
\begin{gather*}
\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \geq \frac{9}{a+b+b+c+c+a}=\frac{9}{2(a+b+c)} \tag{1}\\
\frac{3 a b c}{a+b+c}=\frac{3}{\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}} \geq \frac{a b+b c+c a}{3} \tag{2}
\end{gather*}
$$

Taking into account (1), (2) and the well-known inequality

$$
(a+b+c)^{2} \geq 3(a b+b c+c a)
$$

we have

$$
\begin{aligned}
& \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{3 a b c}{2(a b+b c+c a)^{2}} \geq \\
\geq & \frac{9}{2(a+b+c)}+\frac{(a+b+c)(a b+b c+c a)}{3 \cdot 2(a b+b c+c a)} \geq \\
\geq & \frac{9}{2(a+b+c)}+\frac{a+b+c}{2(a+b+c)^{2}}= \\
= & \frac{5}{a+b+c}
\end{aligned}
$$

and the result is proven. We have equality if and only if $a=b=c$.

