Problema S119. Consider a point P inside a triangle $A B C$. Let $A A_{1}$, $B B_{1}, C C_{1}$ be cevians through P. The midpoint M of $B C$ is different from A_{1} and T is the intersection of $A A_{1}$ and $B_{1} C_{1}$. Prove that if the circumcircle of triangle $B T C$ is tangent to the line $B_{1} C_{1}$, then $\angle B T M=\angle A_{1} T C$.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
First we prove the following
Lemma. From a point P, external to a circle (O), construct a tangent $P T$ and a secant cutting the circle at A and B, as in figure. Let M be the midpoint of $A B$ and let N the harmonic conjugate of P with respect to A, B. Prove that $\angle A T M=\angle N T B$.

Proof.
Let $P T_{1}$ be the second tangent to the circle and denote $X=T T_{1} \cap A B$. It is well known that (A, X, B, P) is an harmonic quadruple, so $T T_{1} \cap A B=N$.

Let $P A=u, P B=v$. Then $A B=u-v, P M=P B+\frac{1}{2} A B=\frac{u+v}{2}$ and

$$
\begin{aligned}
A N: N B & =P A: P B \\
(A N+N B): A N & =(P A+P B): P A \\
(u-v): A N & =(u+v): u \\
A N=\frac{u(u-v)}{u+v} \quad & \Longrightarrow \\
& \quad P N=P A-A N=\frac{2 u v}{u+v}
\end{aligned}
$$

By the tangent-secant theorem we have

$$
P M \cdot P N=\frac{u+v}{2} \cdot \frac{2 u v}{u+v}=u v=P A \cdot P B=P T^{2} \quad \Longrightarrow \quad \frac{P T}{P N}=\frac{P M}{P T}
$$

Thus, by S.A.S. similarity theorem, we have $\triangle T M P \sim \triangle N T P$ so

$$
\begin{equation*}
\angle T M P=\angle N T P=\angle N T B+\angle B T P \tag{1}
\end{equation*}
$$

The exterior angle theorem yields:

$$
\begin{equation*}
\angle T M P=\angle A T M+\angle T A M \tag{2}
\end{equation*}
$$

Since $\angle T A M=\angle T T_{1} B=\angle B T P,(1)$ and (2) imply that $\angle A T M=\angle N T B$ and the lemma is proven.

Coming back to the problem and let $A_{2}=B_{1} C_{1} \cap B C$ as in figure below. By the Lemma, in order to complete the proof, is enough to show that A_{2} is the harmonic conjugate of A_{1} with respect to B and C.

By the Ceva's and Menelao's theorems we have

$$
\begin{gathered}
\frac{A C_{1}}{C_{1} B} \cdot \frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A}=1 \\
\frac{B A_{2}}{A_{2} C} \cdot \frac{C B_{1}}{B_{1} A} \cdot \frac{A C_{1}}{C_{1} B}=-1
\end{gathered}
$$

Therefore

$$
\frac{A C_{1}}{C_{1} B} \cdot \frac{B A_{1}}{A_{1} C} \cdot \frac{C B_{1}}{B_{1} A}=-\frac{B A_{2}}{A_{2} C} \cdot \frac{C B_{1}}{B_{1} A} \cdot \frac{A C_{1}}{C_{1} B} \quad \Longrightarrow \quad \frac{B A_{1}}{A_{1} C}=-\frac{B A_{2}}{A_{2} C}
$$

i.e. A_{1}, A_{2} are harmonic conjugates with respect to B, C so we are done.

