
Problema S119. Consider a point P inside a triangle ABC. Let AA1,
BB1, CC1 be cevians through P . The midpoint M of BC is different from A1

and T is the intersection of AA1 and B1C1. Prove that if the circumcircle of
triangle BTC is tangent to the line B1C1, then ∠BTM = ∠A1TC.
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Solution by Ercole Suppa, Teramo, Italy

First we prove the following

Lemma. From a point P , external to a circle (O), construct a tangent PT
and a secant cutting the circle at A and B, as in figure. Let M be the midpoint
of AB and let N the harmonic conjugate of P with respect to A, B. Prove that
∠ATM = ∠NTB.

Proof.

Let PT1 be the second tangent to the circle and denote X = TT1 ∩ AB. It
is well known that (A, X, B, P ) is an harmonic quadruple, so TT1 ∩AB = N .
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Let PA = u, PB = v. Then AB = u− v, PM = PB + 1
2AB = u+v
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By the tangent-secant theorem we have
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PN
=

PM

PT

Thus, by S.A.S. similarity theorem, we have 4TMP ∼ 4NTP so

∠TMP = ∠NTP = ∠NTB + ∠BTP (1)

The exterior angle theorem yields:

∠TMP = ∠ATM + ∠TAM (2)
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Since ∠TAM = ∠TT1B = ∠BTP , (1) and (2) imply that ∠ATM = ∠NTB
and the lemma is proven. �

Coming back to the problem and let A2 = B1C1 ∩BC as in figure below.
By the Lemma, in order to complete the proof, is enough to show that A2 is
the harmonic conjugate of A1 with respect to B and C.
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By the Ceva’s and Menelao’s theorems we have

AC1

C1B
· BA1

A1C
· CB1

B1A
= 1

BA2

A2C
· CB1

B1A
· AC1

C1B
= −1

Therefore

AC1

C1B
· BA1

A1C
· CB1

B1A
= −BA2

A2C
· CB1

B1A
· AC1

C1B
=⇒ BA1

A1C
= −BA2

A2C

i.e. A1, A2 are harmonic conjugates with respect to B, C so we are done. �
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