Problema S123. Prove that in any triangle with sidelengths a, b, c the following inequality holds:

$$
\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+\frac{(b+c-a)(c+a-b)(a+b-c)}{a b c} \geq 7
$$

Proposed by Cezar Lupu, University of Bucharest, Romania
Solution by Ercole Suppa, Teramo, Italy
Our inequality is equivalent to:

$$
b c(b+c)+a c(a+c)+a b(a+b)+(b+c-a)(c+a-b)(a+b-c)-7 a b c \geq 0
$$

Using the Ravi substitution $a=x+y, b=y+z, c=z+x, x, y, z \geq 0$, after some calculations, we can rewrite the inequality (1) in the following form:

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}+3 x y z \geq x y(x+y)+y z(y+z)+z x(z+x) \tag{2}
\end{equation*}
$$

which is true because it is equivalent to the $r=1$ case of Schur's inequality:

$$
x^{r}(x-y)(x-z)+y^{r}(y-x)(y-z)+z^{r}(z-x)(z-y) \geq 0
$$

The proof is finished. Equality holds for $x=y=z$ or $x=y, z=0$ up to permutation, i.e. if the triangle is equilateral $(a=b=c)$ or degenerate ($b=c$, $a=2 b$ up to permutations).

