Problema S125. Find all pairs (p, q) of positive integers that satisfy

$$
\left|\frac{p}{q}-\sqrt{2}\right|<\frac{1}{q^{2}}
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
We need the following lemmas
Lemma 1. A pair (p, q) of positive integers, with $q \geq 2$, satisfies

$$
\begin{equation*}
\left|\frac{p}{q}-\sqrt{2}\right|<\frac{1}{q^{2}} \tag{1}
\end{equation*}
$$

if and only if $\left|p^{2}-2 q^{2}\right| \leq 2$ and $q \geq 2$.
Proof. (\Rightarrow) If (p, q) satisfies inequality (1) we have

$$
|p-q \sqrt{2}|<\frac{1}{q} \quad, \quad \frac{p}{q}<\sqrt{2}+\frac{1}{q^{2}}
$$

so

$$
\begin{equation*}
\left|p^{2}-2 q^{2}\right|<\frac{1}{q}(p+q \sqrt{2})=\frac{p}{q}+\sqrt{2}<2 \sqrt{2}+\frac{1}{q^{2}} \tag{2}
\end{equation*}
$$

We now consider the following cases

- If $q=2$ then $|p-2 \sqrt{2}|<1 / 2$, hence

$$
2 \sqrt{2}-\frac{1}{2}<p<2 \sqrt{2}+\frac{1}{2} \quad \Rightarrow \quad p=3 \quad \Rightarrow \quad\left|p^{2}-2 q^{2}\right| \leq 2
$$

- If $q \geq 3$, by (2) we have

$$
\left|p^{2}-2 q^{2}\right| \leq 2 \sqrt{2}+\frac{1}{q^{2}} \leq 2 \sqrt{2}+\frac{1}{9} \approx 2.9 \quad \Rightarrow
$$

and, since $p^{2}-2 q^{2}$ is integer, $\left|p^{2}-2 q^{2}\right| \leq 2$.
(\Leftarrow) If (p, q) is a pair of positive integers, with $q \geq 2$, such that $\left|p^{2}-2 q^{2}\right| \leq 2$, then we have

$$
2 q^{2}-p^{2} \leq\left|p^{2}-2 q^{2}\right| \leq 2 \quad \Rightarrow \quad \frac{p^{2}}{q^{2}} \geq 2-\frac{2}{q^{2}} \geq 1 \quad \Rightarrow \quad \frac{p}{q} \geq 1
$$

Therefore

$$
\left|\frac{p}{q}-\sqrt{2}\right|=\frac{\left|p^{2}-2 q^{2}\right|}{q^{2}\left(\frac{p}{q}+\sqrt{2}\right)} \leq \frac{2}{q^{2}(1+\sqrt{2})}<\frac{1}{q^{2}}
$$

and the lemma is proven.

Lemma 2. Every positive solution of the equation $\left|x^{2}-2 y^{2}\right|=1$ is given by $\left(x_{n}, y_{n}\right)$, where x_{n} and y_{n} are the integers determined from

$$
x_{n}+y_{n} \sqrt{2}=(1+\sqrt{2})^{n} \quad, \quad n \in \mathbb{N}
$$

Furthermore if n in odd $x_{n}^{2}-2 y_{n}^{2}=-1$, whereas if n in even $x_{n}^{2}-2 y_{n}^{2}=1$.
Proof. It can be found in a number theory book which deals with Pell's equation theory.

Now we will solve the problem.
If $q=1$ we find the pairs $(1,1)$ and $(2,1)$.
If $q \geq 2$, due to the Lemma 1 , it is enough to find all pairs (p, q) of positive integers that satisfy $\left|p^{2}-2 q^{2}\right| \leq 2$. Since $p^{2}-2 q^{2} \neq 0$ we must solve the equations $\left|p^{2}-2 q^{2}\right|=1$ and $\left|p^{2}-2 q^{2}\right|=2$.

By using the Lemma 2, the solutions of $\left|p^{2}-2 q^{2}\right|=1$ are the pairs $\left(p_{n}, q_{n}\right)$ such that

$$
p_{n}+q_{n} \sqrt{2}=(1+\sqrt{2})^{n} \quad, \quad n \in \mathbb{N}
$$

Since

$$
\begin{aligned}
p_{n+1}+q_{n+1} \sqrt{2} & =(1+\sqrt{2})^{n+1}=(1+\sqrt{2})^{n} \cdot(1+\sqrt{2})= \\
& =\left(p_{n}+q_{n} \sqrt{2}\right) \cdot(1+\sqrt{2})=p_{n}+2 q_{n}+\left(p_{n}+q_{n}\right) \sqrt{2}
\end{aligned}
$$

the solutions $\left(p_{n}, q_{n}\right)$ are given by the following recurrence

$$
A:\left\{\begin{array}{l}
p_{n+1}=p_{n}+2 q_{n} \tag{3}\\
q_{n+1}=p_{n}+q_{n}
\end{array} \quad, \quad n \in \mathbb{N}\right.
$$

with initial conditions $p_{1}=1$ and $q_{1}=1$.
In order to solve the equation $\left|p^{2}-2 q^{2}\right|=2$, let us observe that p must be even. Thus, by setting $q=u$ and $p=2 v$ the equation turns into

$$
\left|u^{2}-2 v^{2}\right|=1
$$

whose solutions $\left(u_{n}, v_{n}\right)$ are given by the recurrences $u_{n+1}=u_{n}+2 v_{n}, v_{n+1}=$ $u_{n}+v_{n}(n \in \mathbb{N})$, with $u_{1}=1$ and $v_{1}=1$.

Then, after an easy calculation, we find that the solutions of $\left|p^{2}-2 q^{2}\right|=2$ are

$$
B:\left\{\begin{array}{l}
p_{n+1}=p_{n}+2 q_{n} \tag{4}\\
q_{n+1}=p_{n}+q_{n}
\end{array} \quad, \quad n \in \mathbb{N}\right.
$$

with initial conditions $p_{1}=2$ and $q_{1}=1$.
Finally we have proved that the solutions of the proposed inequality can be obtained by means of the recurrences (3) and (4) which, obviously, include also the pairs $(1,1)$ and $(2,1)$.

By means of Mathematica we have listed the first thirteen solutions given by A and B :

$$
\begin{aligned}
A & =\left\{\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \frac{577}{408}, \frac{1393}{985}, \frac{3363}{2378}, \frac{8119}{5741}, \frac{19601}{13860}, \frac{47321}{33461}, \ldots\right\} \\
B & =\left\{\frac{2}{1}, \frac{4}{3}, \frac{10}{7}, \frac{24}{17}, \frac{58}{41}, \frac{140}{99}, \frac{338}{239}, \frac{816}{577}, \frac{1970}{1393}, \frac{4756}{3363}, \frac{11482}{8119}, \frac{27720}{19601}, \frac{66922}{47321}, \ldots\right\}
\end{aligned}
$$

