Problema S137. Let ABCD be a cyclic quadrilateral and let $U = AB \cap CD$ and $V = BC \cap AD$. The line that passes through V and is perpendicular to the angle bisector of angle $\angle AUD$ intersects UA and UD at X and Y, respectively. Prove that

$$AX \cdot DY = BX \cdot CY$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Let E, J be the intersection points of the line XY with the angle bisectors of angles $\angle AUD$, $\angle BCD$ respectively and let $I = XY \cap CJ$, as shown in figure.

Claim: The line XY is the angle bisector of angle $\angle AVB$.

Proof. Let us denote with A, B, C, D the measures of internal angles of quadrilateral ABCD. We have

$$\angle AVB = 180^{\circ} - (A+B)$$
 , $\angle AUD = 180^{\circ} - (A+D)$ (1)

and

$$\angle CIV = \angle EIJ = 90^{\circ} - \angle EJI = 90^{\circ} - \angle UJC =$$

$$= 90^{\circ} - (180^{\circ} - \angle JUC - \angle JCU) =$$

$$= \angle JUC + \angle JCU - 90^{\circ} =$$

$$= \frac{180^{\circ} - (A+D)}{2} + \left(180^{\circ} - \frac{C}{2}\right) - 90^{\circ} =$$

$$= \frac{C}{2} - \frac{D}{2} + 90^{\circ} - \frac{C}{2} = 90^{\circ} - \frac{D}{2}$$
(2)

From (1), (2) it follows that

$$\begin{split} \angle BVX &= \angle CVI = 180^\circ - \angle CIV - \angle ICV = \\ &= 180^\circ - \left(90^\circ - \frac{D}{2}\right) - \left(180^\circ - \frac{C}{2}\right) = \\ &= \frac{D}{2} + \frac{C}{2} - 90^\circ = 90^\circ - \frac{A+B}{2} = \frac{1}{2} \angle AVB \end{split}$$

and the claim is proven.

Coming back to the problem, applying the internal bisector theorem to the triangles $\triangle VCD$ and $\triangle VAB$ we obtain

$$CY:YD=VC:VD \qquad \Rightarrow \qquad VC=\frac{CY}{YD}\cdot VD \qquad \qquad (3)$$

$$BX: XA = VB: VA \qquad \Rightarrow \qquad VB = \frac{BX}{XA} \cdot VA \tag{4}$$

From (3), (4), taking into account that $VC \cdot VB = VD \cdot VA$, we get

$$\frac{CY}{YD} \cdot VD \cdot \frac{BX}{XA} \cdot VA = VD \cdot VA \qquad \Rightarrow \qquad AX \cdot DY = BX \cdot CY$$

and the proof is complete.