Problema S137. Let $A B C D$ be a cyclic quadrilateral and let $U=A B \cap C D$ and $V=B C \cap A D$. The line that passes through V and is perpendicular to the angle bisector of angle $\angle A U D$ intersects $U A$ and $U D$ at X and Y, respectively. Prove that

$$
A X \cdot D Y=B X \cdot C Y
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
Let E, J be the intersection points of the line $X Y$ with the angle bisectors of angles $\angle A U D, \angle B C D$ respectively and let $I=X Y \cap C J$, as shown in figure.

Claim: The line $X Y$ is the angle bisector of angle $\angle A V B$.
Proof. Let us denote with A, B, C, D the measures of internal angles of quadrilateral $A B C D$. We have

$$
\begin{equation*}
\angle A V B=180^{\circ}-(A+B) \quad, \quad \angle A U D=180^{\circ}-(A+D) \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\angle C I V & =\angle E I J=90^{\circ}-\angle E J I=90^{\circ}-\angle U J C= \\
& =90^{\circ}-\left(180^{\circ}-\angle J U C-\angle J C U\right)= \\
& =\angle J U C+\angle J C U-90^{\circ}= \\
& =\frac{180^{\circ}-(A+D)}{2}+\left(180^{\circ}-\frac{C}{2}\right)-90^{\circ}= \tag{2}\\
& =\frac{C}{2}-\frac{D}{2}+90^{\circ}-\frac{C}{2}=90^{\circ}-\frac{D}{2}
\end{align*}
$$

From (1), (2) it follows that

$$
\begin{aligned}
\angle B V X & =\angle C V I=180^{\circ}-\angle C I V-\angle I C V= \\
& =180^{\circ}-\left(90^{\circ}-\frac{D}{2}\right)-\left(180^{\circ}-\frac{C}{2}\right)= \\
& =\frac{D}{2}+\frac{C}{2}-90^{\circ}=90^{\circ}-\frac{A+B}{2}=\frac{1}{2} \angle A V B
\end{aligned}
$$

and the claim is proven.
Coming back to the problem, applying the internal bisector theorem to the triangles $\triangle V C D$ and $\triangle V A B$ we obtain

$$
\begin{array}{lll}
C Y: Y D=V C: V D & \Rightarrow & V C=\frac{C Y}{Y D} \cdot V D \\
B X: X A=V B: V A & \Rightarrow & V B=\frac{B X}{X A} \cdot V A \tag{4}
\end{array}
$$

From (3), (4), taking into account that $V C \cdot V B=V D \cdot V A$, we get

$$
\frac{C Y}{Y D} \cdot V D \cdot \frac{B X}{X A} \cdot V A=V D \cdot V A \quad \Rightarrow \quad A X \cdot D Y=B X \cdot C Y
$$

and the proof is complete.

