
Problema S138. Let a, b, c be positive real numbers such that
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By AM-GM inequality we have
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On the other hand, taking xi = a1/3, yi = b2/3, p = 3
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Since
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c = 3 from (2) it follows that
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From (1) and (3) we get the desired inequality.

The equality holds if a = b = c = 1. �
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