Problema S138. Let a, b, c be positive real numbers such that $\sqrt{a}+\sqrt{b}+$ $\sqrt{c}=3$. Prove that

$$
8\left(a^{2}+b^{2}+c^{2}\right) \geq 3(a+b)(b+c)(c+a)
$$

Proposed by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
Solution by Ercole Suppa, Teramo, Italy
By AM-GM inequality we have

$$
\begin{equation*}
3(a+b)(b+c)(c+a) \leq 3\left(\frac{2 a+2 b+2 c}{3}\right)^{3}=\frac{8}{9}(a+b+c)^{3} \tag{1}
\end{equation*}
$$

On the other hand, taking $x_{i}=a^{1 / 3}, y_{i}=b^{2 / 3}, p=\frac{3}{2}, q=3$, in the Hölder's inequality

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}{ }^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} y_{i}{ }^{q}\right)^{\frac{1}{q}}
$$

we get

$$
\begin{gather*}
a+b+c=a^{\frac{1}{3}} a^{\frac{2}{3}}+b^{\frac{1}{3}} b^{\frac{2}{3}}+c^{\frac{1}{3}} c^{\frac{2}{3}} \leq(\sqrt{a}+\sqrt{b}+\sqrt{c})^{\frac{2}{3}}\left(a^{2}+b^{2}+c^{2}\right)^{\frac{1}{3}} \Rightarrow \\
(a+b+c)^{3} \leq(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2}\left(a^{2}+b^{2}+c^{2}\right) \tag{2}
\end{gather*}
$$

Since $\sqrt{a}+\sqrt{b}+\sqrt{c}=3$ from (2) it follows that

$$
\begin{equation*}
(a+b+c)^{3} \leq 9\left(a^{2}+b^{2}+c^{2}\right) \tag{3}
\end{equation*}
$$

From (1) and (3) we get the desired inequality.
The equality holds if $a=b=c=1$.

