Problema S138. Let a, b, c be positive real numbers such that $\sqrt{a} + \sqrt{b} + \sqrt{c} = 3$. Prove that

$$8(a^2 + b^2 + c^2) \ge 3(a+b)(b+c)(c+a)$$

Proposed by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy Solution by Ercole Suppa, Teramo, Italy

By AM-GM inequality we have

$$3(a+b)(b+c)(c+a) \le 3\left(\frac{2a+2b+2c}{3}\right)^3 = \frac{8}{9}(a+b+c)^3 \tag{1}$$

On the other hand, taking $x_i=a^{1/3},\,y_i=b^{2/3},\,p=\frac{3}{2},\,q=3,$ in the Hölder's inequality

$$\sum_{i=1}^{n} x_i y_i \le \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}}$$

we get

$$a + b + c = a^{\frac{1}{3}}a^{\frac{2}{3}} + b^{\frac{1}{3}}b^{\frac{2}{3}} + c^{\frac{1}{3}}c^{\frac{2}{3}} \le \left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right)^{\frac{2}{3}}\left(a^2 + b^2 + c^2\right)^{\frac{1}{3}} \implies$$

$$(a+b+c)^3 \le \left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right)^2 \left(a^2 + b^2 + c^2\right)$$
 (2)

Since $\sqrt{a} + \sqrt{b} + \sqrt{c} = 3$ from (2) it follows that

$$(a+b+c)^3 \le 9(a^2+b^2+c^2) \tag{3}$$

From (1) and (3) we get the desired inequality.

The equality holds if a = b = c = 1.