Problema S140. Let a, b, c be integers. Prove that

$$
\sum_{c y c}(a-b)\left(a^{2}+b^{2}-c^{2}\right) c^{2}
$$

is divisible by $(a+b+c)^{2}$.
Proposed by Dorin Andrica, "Babes-Bolyai" University, Cluj-Napoca, Romania
Solution by Ercole Suppa, Teramo, Italy
Clearly we have

$$
\begin{align*}
& \sum_{c y c}(a-b)\left(a^{2}+b^{2}-c^{2}\right) c^{2}= \\
= & \sum_{c y c} a^{3} c^{2}+\sum_{c y c} a b^{2} c^{2}-\sum_{c y c} a c^{4}-\sum_{c y c} a^{2} b c^{2}-\sum_{c y c} b^{3} c^{2}+\sum_{c y c} b c^{4}= \\
= & \sum_{c y c} a^{3} c^{2}-\sum_{c y c} a c^{4}-\sum_{c y c} b^{3} c^{2}+\sum_{c y c} b c^{4}= \\
= & \sum_{c y c} a^{3}\left(c^{2}-b^{2}\right)+\sum_{c y c} a^{4}(c-b)= \\
= & \sum_{c y c} a^{3}(c-b)(a+b+c)=(a+b+c) \sum_{c y c} a^{3}(c-b) \tag{1}
\end{align*}
$$

so the given sum is divisible by $a+b+c$.
Let us rewrite the expression $\sum_{c y c} a^{3}(c-b)$ in the following form

$$
\begin{align*}
\sum_{c y c} a^{3}(c-b) & =a^{3}(c-b)+b^{3}(a-c)+c^{3}(b-a)= \\
& =(b-a)\left[c^{3}-\left(a^{2}+b^{2}+a b\right) c-a b(a+b)\right] \tag{2}
\end{align*}
$$

Now, observe that the roots α, β, γ of the polynomial

$$
P(c)=c^{3}-\left(a^{2}+b^{2}+a b\right) c-a b(a+b)
$$

satisfy the Viète's formulas

$$
\alpha+\beta+\gamma=0 \quad, \quad \alpha \beta+\beta \gamma+\gamma \alpha=-a^{2}-b^{2}-a b \quad, \quad \alpha \beta \gamma=-a b(a+b)
$$

An easy computation show that $\alpha=a, \beta=b, \gamma=-a-b$, hence

$$
\begin{equation*}
P(c)=(c-a)(c-b)(c+a+b) \tag{3}
\end{equation*}
$$

Finally, from (1),(2) and (3) it follows that

$$
\sum_{c y c}(a-b)\left(a^{2}+b^{2}-c^{2}\right) c^{2}=(b-a)(c-a)(c-b)(a+b+c)^{2}
$$

and the proof is finished.

