
Problema S144. Let ABCD be a quadrilateral. We consider the reflection
of the lines AB, BC, CD, DA on the respective midpoints of the opposite sides
CD, DA, AB, BC. Prove that these four lines bound a quadrilateral A′B′C ′D′

homothetic with ABCD and find the ratio and center of the homothety.
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Consider a system of coordinates with origin in the centroid O of ABCD

and denote by
−→
X the vector from O to X. Let A1, B1 be the reflections of A,

B on the midpoint M of CD and let A2, D2 be the reflections of A, D on the
midpoint N of BC, as shown in figure.
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We clearly have
−→
M =

−→
C +
−→
D

2 ,
−→
N =

−→
B+
−→
C

2 , hence

−→
A1 =

−→
C +

−→
D −

−→
A,

−→
B1 =

−→
C +

−→
D −

−→
B (1)

−→
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Since A′ lies on the lines A1B1 and A2D2 there are suitable real numbers t,
u such that

−→
A′ =

−→
A1 + t

(−→
B1 −

−→
A1

)
=
−→
A2 + u

(−→
D2 −
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)
and using (1) and (2) we get
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)
=
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)
⇒
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(t− u)
−→
A − (t + 1)

−→
B + (u + 1)

−→
D = 0

Since the vectors
−→
A ,
−→
B and

−→
D are linearly independent we obtain

t = u = −1 ⇒
−→
A′ =

−→
B +

−→
C +

−→
D − 2

−→
A (3)

From (3), taking into account that
−→
O = 1

4

(−→
A +

−→
B +

−→
C +

−→
D

)
, it follows

that
−→
A′ + 3 ·

−→
A = 4 ·

−→
O ⇔

−−→
OA′ = −3 ·

−→
OA

and this implies that A′ is the image of A under the homotety of center O and
ratio k = −3. In similar way we can prove that B′, C ′, D′ are respectively the
correspondents of B, C, D in the homotety with center O and ratio k = −3.

Therefore the quadrilateral A′B′C ′D′ is the image of ABCD under the
homotety of center O and ratio k = −3. �
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