Problema S144. Let $A B C D$ be a quadrilateral. We consider the reflection of the lines $A B, B C, C D, D A$ on the respective midpoints of the opposite sides $C D, D A, A B, B C$. Prove that these four lines bound a quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ homothetic with $A B C D$ and find the ratio and center of the homothety.

Proposed by Francisco Javier García Capitán and Juan Bosco Romero Márquez

Solution by Ercole Suppa, Teramo, Italy

Consider a system of coordinates with origin in the centroid O of $A B C D$ and denote by \vec{X} the vector from O to X. Let A_{1}, B_{1} be the reflections of A, B on the midpoint M of $C D$ and let A_{2}, D_{2} be the reflections of A, D on the midpoint N of $B C$, as shown in figure.

We clearly have $\vec{M}=\frac{\vec{C}+\vec{D}}{2}, \vec{N}=\frac{\vec{B}+\vec{C}}{2}$, hence

$$
\begin{array}{ll}
\overrightarrow{A_{1}}=\vec{C}+\vec{D}-\vec{A}, & \overrightarrow{B_{1}}=\vec{C}+\vec{D}-\vec{B} \\
\overrightarrow{A_{2}}=\vec{B}+\vec{C}-\vec{A}, & \overrightarrow{D_{2}}=\vec{B}+\vec{C}-\vec{D} \tag{2}
\end{array}
$$

Since A^{\prime} lies on the lines $A_{1} B_{1}$ and $A_{2} D_{2}$ there are suitable real numbers t, u such that

$$
\overrightarrow{A^{\prime}}=\overrightarrow{A_{1}}+t\left(\overrightarrow{B_{1}}-\overrightarrow{A_{1}}\right)=\overrightarrow{A_{2}}+u\left(\overrightarrow{D_{2}}-\overrightarrow{A_{2}}\right)
$$

and using (1) and (2) we get

$$
\vec{C}+\vec{D}-\vec{A}+t(\vec{A}-\vec{B})=\vec{B}+\vec{C}-\vec{A}+u(\vec{A}-\vec{D}) \quad \Rightarrow
$$

$$
(t-u) \vec{A}-(t+1) \vec{B}+(u+1) \vec{D}=0
$$

Since the vectors \vec{A}, \vec{B} and \vec{D} are linearly independent we obtain

$$
\begin{equation*}
t=u=-1 \quad \Rightarrow \quad \overrightarrow{A^{\prime}}=\vec{B}+\vec{C}+\vec{D}-2 \vec{A} \tag{3}
\end{equation*}
$$

From (3), taking into account that $\vec{O}=\frac{1}{4}(\vec{A}+\vec{B}+\vec{C}+\vec{D})$, it follows that

$$
\overrightarrow{A^{\prime}}+3 \cdot \vec{A}=4 \cdot \vec{O} \quad \Leftrightarrow \quad \overrightarrow{O A^{\prime}}=-3 \cdot \overrightarrow{O A}
$$

and this implies that A^{\prime} is the image of A under the homotety of center O and ratio $k=-3$. In similar way we can prove that $B^{\prime}, C^{\prime}, D^{\prime}$ are respectively the correspondents of B, C, D in the homotety with center O and ratio $k=-3$.

Therefore the quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is the image of $A B C D$ under the homotety of center O and ratio $k=-3$.

