Problema S146. Let m_{a}, m_{b}, m_{c} be the medians, k_{a}, k_{b}, k_{c} the symmedians, r the inradius, and R the circumradius of a triangle $A B C$. Prove that

$$
\frac{3 R}{2 r} \geq \frac{m_{a}}{k_{a}}+\frac{m_{b}}{k_{b}}+\frac{m_{c}}{k_{c}} \geq 3
$$

Proposed by Pangiote Ligouras, Bari, Italy
Solution by Ercole Suppa, Teramo, Italy
By using the well known formulas

$$
m_{a}=\frac{1}{2} \sqrt{2 b^{2}+2 c^{2}-a^{2}} \quad, \quad k_{a}=\frac{b c}{b^{2}+c^{2}} \sqrt{2 b^{2}+2 c^{2}-a^{2}}
$$

the given inequality equivals to

$$
\begin{equation*}
\frac{3 R}{r} \geq \frac{a^{2}+b^{2}}{a b}+\frac{b^{2}+c^{2}}{b c}+\frac{c^{2}+a^{2}}{c a} \geq 6 \tag{1}
\end{equation*}
$$

The right-hand side of (1) is obvious since

$$
\frac{a^{2}+b^{2}}{a b} \geq 2 \quad, \quad \frac{b^{2}+c^{2}}{b c} \geq 2 \quad, \quad \frac{c^{2}+a^{2}}{c a} \geq 2
$$

For the left-hand side, we prove at first following inequality

$$
\begin{equation*}
\frac{R}{r} \geq \frac{a^{2}+b^{2}}{a b} \tag{2}
\end{equation*}
$$

By using Ravi's transformations $a=y+z, b=x+z, c=x+y$, the above inequality rewrites as

$$
\begin{aligned}
\frac{(x+y)(y+z)(z+x)}{4 x y z} \geq \frac{y+z}{x+z}+\frac{x+z}{y+z} & \Leftrightarrow \\
\frac{x+y}{4 x y z} \geq \frac{1}{(x+z)^{2}}+\frac{1}{(y+z)^{2}} & \Leftrightarrow \\
\frac{1}{4 y z}+\frac{1}{4 x z} \geq \frac{1}{(x+z)^{2}}+\frac{1}{(y+z)^{2}} &
\end{aligned}
$$

which is true since $(x+z)^{2} \geq 4 x z$ and $(y+z)^{2} \geq 4 y z$.
Summing up (2) and similar cyclic results we get the desired inequality. Moreover, the equality holds only in the case $a=b=c$.

