
Problema S146. Let ma, mb, mc be the medians, ka, kb, kc the sym-
medians, r the inradius, and R the circumradius of a triangle ABC. Prove
that
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By using the well known formulas
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the given inequality equivals to
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The right-hand side of (1) is obvious since
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For the left-hand side, we prove at first following inequality
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By using Ravi’s transformations a = y + z, b = x + z, c = x + y, the above
inequality rewrites as
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which is true since (x + z)2 ≥ 4xz and (y + z)2 ≥ 4yz.

Summing up (2) and similar cyclic results we get the desired inequality.
Moreover, the equality holds only in the case a = b = c. �
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