Problema S146. Let m_a , m_b , m_c be the medians, k_a , k_b , k_c the symmedians, r the inradius, and R the circumradius of a triangle ABC. Prove that

$$\frac{3R}{2r} \ge \frac{m_a}{k_a} + \frac{m_b}{k_b} + \frac{m_c}{k_c} \ge 3$$

Proposed by Pangiote Ligouras, Bari, Italy

Solution by Ercole Suppa, Teramo, Italy

By using the well known formulas

$$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$
 , $k_a = \frac{bc}{b^2 + c^2}\sqrt{2b^2 + 2c^2 - a^2}$

the given inequality equivals to

$$\frac{3R}{r} \ge \frac{a^2 + b^2}{ab} + \frac{b^2 + c^2}{bc} + \frac{c^2 + a^2}{ca} \ge 6 \tag{1}$$

The right-hand side of (1) is obvious since

$$\frac{a^2 + b^2}{ab} \ge 2$$
 , $\frac{b^2 + c^2}{bc} \ge 2$, $\frac{c^2 + a^2}{ca} \ge 2$

For the left-hand side, we prove at first following inequality

$$\frac{R}{r} \ge \frac{a^2 + b^2}{ab} \tag{2}$$

By using Ravi's transformations $a=y+z,\,b=x+z,\,c=x+y,$ the above inequality rewrites as

$$\frac{(x+y)(y+z)(z+x)}{4xyz} \ge \frac{y+z}{x+z} + \frac{x+z}{y+z} \qquad \Leftrightarrow$$

$$\frac{x+y}{4xyz} \ge \frac{1}{(x+z)^2} + \frac{1}{(y+z)^2} \qquad \Leftrightarrow$$

$$\frac{1}{4yz} + \frac{1}{4xz} \ge \frac{1}{(x+z)^2} + \frac{1}{(y+z)^2}$$

which is true since $(x+z)^2 \ge 4xz$ and $(y+z)^2 \ge 4yz$.

Summing up (2) and similar cyclic results we get the desired inequality. Moreover, the equality holds only in the case a = b = c.