
Problema S150. Let A1A2A3A4 be a quadrilateral inscribed in a circle
C(O,R) and circumscribed about a circle omega(I, r). Denote by Ri the radius
of the circle tangent to AiAi+1 and tangent to the extensions of the sides Ai−1Ai

and Ai+1Ai+2. Prove that the sum R1 +R2 +R3 +R4 does not depend on the
position of points A1, A2, A3, A4.
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The claimed result is wrong, as we can verify with a dynamic geometry
software. Anyway, we can express the sum R1 + R2 + R3 + R4 by means of r
and the sidelengths of the quadrilateral A1A2A3A4.
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Let us denote A1A2 = a, A2A3 = b, A3A4 = c, A4A1 = d and let Oi be the
center of the circle tangent to AiAi+1 and tangent to the extensions of the sides
Ai−1Ai and Ai+1Ai+2.

Since A1A2A3A4 is cyclic we have ∠O1A2A1 = ∠A3A4I and ∠O1A1A2 =
∠A4A3I. Thus the triangles 4O1A1A2 and 4O1A3A4 are similar, so
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Summing up (1) and similar cyclic results we get

R1 +R2 +R3 +R4 = r
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as desired. �
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