Problema S150. Let $A_{1} A_{2} A_{3} A_{4}$ be a quadrilateral inscribed in a circle $C(O, R)$ and circumscribed about a circle omega (I, r). Denote by R_{i} the radius of the circle tangent to $A_{i} A_{i+1}$ and tangent to the extensions of the sides $A_{i-1} A_{i}$ and $A_{i+1} A_{i+2}$. Prove that the sum $R_{1}+R_{2}+R_{3}+R_{4}$ does not depend on the position of points $A_{1}, A_{2}, A_{3}, A_{4}$.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

The claimed result is wrong, as we can verify with a dynamic geometry software. Anyway, we can express the sum $R_{1}+R_{2}+R_{3}+R_{4}$ by means of r and the sidelengths of the quadrilateral $A_{1} A_{2} A_{3} A_{4}$.

Let us denote $A_{1} A_{2}=a, A_{2} A_{3}=b, A_{3} A_{4}=c, A_{4} A_{1}=d$ and let O_{i} be the center of the circle tangent to $A_{i} A_{i+1}$ and tangent to the extensions of the sides $A_{i-1} A_{i}$ and $A_{i+1} A_{i+2}$.

Since $A_{1} A_{2} A_{3} A_{4}$ is cyclic we have $\angle O_{1} A_{2} A_{1}=\angle A_{3} A_{4} I$ and $\angle O_{1} A_{1} A_{2}=$ $\angle A_{4} A_{3} I$. Thus the triangles $\triangle O_{1} A_{1} A_{2}$ and $\triangle O_{1} A_{3} A_{4}$ are similar, so

$$
\begin{equation*}
\frac{R_{1}}{a}=\frac{r}{c} \quad \Rightarrow \quad R_{1}=r \cdot \frac{a}{c} \tag{1}
\end{equation*}
$$

Summing up (1) and similar cyclic results we get

$$
R_{1}+R_{2}+R_{3}+R_{4}=r\left(\frac{a}{c}+\frac{b}{d}+\frac{c}{a}+\frac{d}{b}\right)
$$

as desired.

