Problema S164. Let $A B C D$ be a cyclic quadrilateral whose diagonals are perpendicular to each other. For a point $P$ on its circumscribed circle denote by $\ell_{P}$ he line tangent to the circle at $P$. Let $U=\ell_{A} \cap \ell_{B}, V=\ell_{B} \cap \ell_{C}$, $W=\ell_{C} \cap \ell_{D}, K=\ell_{D} \cap \ell_{A}$. Prove that $U V W K$ is a cyclic quadrilateral.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

## Solution by Ercole Suppa, Teramo, Italy

Let $E=A C \cap B D, \angle V C B=\angle V B C=u, \angle K D A=\angle K A D=v$, as showed in the following figure


Since $\angle C A B=\angle V C B=u, \angle A B D=\angle K A D=v$ and $u+v=\angle E A B+$ $\angle E B A=90^{\circ}$ we get

$$
\begin{aligned}
\angle W V U+\angle W K U & =\angle C V B+\angle A K D=\left(180^{\circ}-2 u\right)+\left(180^{\circ}-2 v\right) \\
& =360^{\circ}-2(u+v)=360^{\circ}-180^{\circ}=180^{\circ}
\end{aligned}
$$

Therefore the quadrilateral $U V W K$ is cyclic and we are done.

