Problema J163. Let a, b, c be positive real numbers. Prove that

$$
\sum_{c y c} \frac{a^{2} b^{2}(b-c)}{a+b} \geq 0
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Since

$$
\sum_{c y c} \frac{a^{2} b^{2}(b-c)}{a+b} \geq \sum_{c y c} \frac{a^{2} b^{2}(b-c)}{a+b+c}
$$

it suffices to prove that

$$
\begin{equation*}
a^{2} b^{2}(b-c)+b^{2} c^{2}(c-a)+c^{2} a^{2}(a-b) \geq 0 \tag{1}
\end{equation*}
$$

In order to prove (1) we consider the following cases
(i) The first case $a \leq b \leq c$. We clearly have

$$
\begin{aligned}
& a^{2} b^{2}(b-c)+b^{2} c^{2}(c-a)+c^{2} a^{2}(a-b)= \\
= & a^{2} b^{2}(b-c)+b^{2} c^{2}(c-b)+b^{2} c^{2}(b-a)+c^{2} a^{2}(a-b)= \\
= & b^{2}(c-b)\left(c^{2}-a^{2}\right)+c^{2}(b-a)\left(b^{2}-a^{2}\right) \geq 0
\end{aligned}
$$

(ii) The second case $c \leq b \leq a$. We clearly have

$$
\begin{aligned}
& a^{2} b^{2}(b-c)+b^{2} c^{2}(c-a)+c^{2} a^{2}(a-b)= \\
= & a^{2} b^{2}(b-c)+b^{2} c^{2}(c-a)+c^{2} a^{2}(a-c)+c^{2} a^{2}(c-b)= \\
= & a^{2}(b-c)\left(b^{2}-c^{2}\right)+c^{2}(a-c)\left(a^{2}-b^{2}\right) \geq 0
\end{aligned}
$$

This ends the proof. The equality holds for $a=b=c$.

