Problema S218. Let ABC be a triangle with incircle C and incenter I.
Let D, E, F be the tangency points of C with the sides BC, C A, and AB,
respectively, and furthermore, let S be the intersection of BC and EF. Let P,
Q@ be the intersection points of SI with C such that P, @) lie on the small arcs
DE and F'D respectively. Prove that the lines AD, BP, CQ are concurrent.
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We will prove that the result is true if the point I is replaced with any point
X on the segment AD, i.e.:

Let P, @ be the intersection points of SX with C such that P, @Q lie on the
small arcs DE and FD respectively. Prove that the lines AD, BP, C'Q are
concurrent (see figure).

Let a = BC, b= CA, c = AB and let s be the semiperimeter of AABC. It
is well known that AF = FE=s—a, BD=BF =s—-b,CD=CFE =s—c, so

AF BD CE s—a s—b s—c
FB DC FA s—b s—c s—a
Applying Menealaus theorem to AABC with transversal EFS we have

=1 (1)

AP BS CE _ o)
FB SC FA
From (1), (2) it follows that
AF DB CE AF BS CE BD BS

FB DC EA_ FB SC EA = DC_ SC
i.e. the division (S, D, B, C) is harmonic.

Let R=ADNCQ and let P’ = BRN SX. Since (SDBC) = —1 it follows
that R(SDBC) is an harmonic boundle, so
(SXP'Q)=-1 =  (SXQP)=-1 (3)

Since S lies on the polar of A wrt C, A lies on the polar of S wrt C. Therefore
AD is the polar of S with respect to C, so

(SXQP) = -1 (4)

Taking into account of (3) and (4), the uniqueness of fourth harmonic yields
P’ = P and this prove that AD, BP, C(Q are concurrent. O



