Problema S218. Let $A B C$ be a triangle with incircle \mathcal{C} and incenter I. Let D, E, F be the tangency points of \mathcal{C} with the sides $B C, C A$, and $A B$, respectively, and furthermore, let S be the intersection of $B C$ and $E F$. Let P, Q be the intersection points of $S I$ with \mathcal{C} such that P, Q lie on the small arcs $D E$ and $F D$ respectively. Prove that the lines $A D, B P, C Q$ are concurrent.

Proposed by Marius Stanean, Zalau, Romania

Solution by Ercole Suppa, Teramo, Italy

We will prove that the result is true if the point I is replaced with any point X on the segment $A D$, i.e.:

Let P, Q be the intersection points of $S X$ with \mathcal{C} such that P, Q lie on the small arcs $D E$ and $F D$ respectively. Prove that the lines $A D, B P, C Q$ are concurrent (see figure).

Let $a=B C, b=C A, c=A B$ and let s be the semiperimeter of $\triangle A B C$. It is well known that $A F=F E=s-a, B D=B F=s-b, C D=C E=s-c$, so

$$
\begin{equation*}
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=\frac{s-a}{s-b} \cdot \frac{s-b}{s-c} \cdot \frac{s-c}{s-a}=1 \tag{1}
\end{equation*}
$$

Applying Menealaus theorem to $\triangle A B C$ with transversal $E F S$ we have

$$
\begin{equation*}
\frac{A F}{F B} \cdot \frac{B S}{S C} \cdot \frac{C E}{E A}=1 \tag{2}
\end{equation*}
$$

From (1), (2) it follows that

$$
\frac{A F}{F B} \cdot \frac{D B}{D C} \cdot \frac{C E}{E A}=\frac{A F}{F B} \cdot \frac{B S}{S C} \cdot \frac{C E}{E A} \quad \Leftrightarrow \quad \frac{B D}{D C}=-\frac{B S}{S C}
$$

i.e. the division (S, D, B, C) is harmonic.

Let $R=A D \cap C Q$ and let $P^{\prime}=B R \cap S X$. Since $(S D B C)=-1$ it follows that $R(S D B C)$ is an harmonic boundle, so

$$
\begin{equation*}
\left(S X P^{\prime} Q\right)=-1 \quad \Rightarrow \quad\left(S X Q P^{\prime}\right)=-1 \tag{3}
\end{equation*}
$$

Since S lies on the polar of A wrt \mathcal{C}, A lies on the polar of S wrt \mathcal{C}. Therefore $A D$ is the polar of S with respect to \mathcal{C}, so

$$
\begin{equation*}
(S X Q P)=-1 \tag{4}
\end{equation*}
$$

Taking into account of (3) and (4), the uniqueness of fourth harmonic yields $P^{\prime}=P$ and this prove that $A D, B P, C Q$ are concurrent.

