Problema U116. Let G be a K_{4} complete graph without an edge. Find the number of closed walks of length n in G.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Let us call n-walk a walk of length n in G. We use the following results
Lemma 1. If $A=\left(a_{i j}\right)$ is the adjacency matrix of a graph G, then the (i, j)-entry $a_{i j}^{(n)}$ of the matrix A^{n} is equal to the number of n-walks that originate at vertex i and terminate at vertex j.

Proof.

We proceed by induction. The lemma is trivially true for $n=1$. For inductive hypothesis, assume that the lemma holds for for $n-1$, i.e. assume that the (i, j) entry of the matrix $A^{n-1}=\left(a_{i j}^{(n-1)}\right)$ represent the number of the walks of length $n-1$ from vertex i to vertex j. The (i, j) entry of A^{n} is given by

$$
\begin{equation*}
a_{i j}^{(n)}=\sum_{k=1}^{n} a_{i k}^{(n-1)} \cdot a_{k j} \tag{1}
\end{equation*}
$$

In (1), $a_{k j}=1$ or 0 depending on whether or not there is a walk from k to j. Thus a term of sum (1) is non zero if and only if there is a n-walk from i to j, whose last edge is from k to j. If the term is not zero, its value equals the number of such edge sequences from i to j via k, where $1 \leq k \leq n$. Therefore (1) is equal to the number of all possible n-walks from i to j and the lemma is proven.

Lemma 2. Let A be a square matrix, let λ be an eigenvalue of A and let $n \geq 0$ be an integer. Then λ^{n} is an eigenvalue of A^{n}.

Proof.

Let $x \neq 0$ be an eigenvector of A corresponding to the eigenvalue λ. We proceed by induction on n. Obviously for $n=0$ we have

$$
A^{0} x=I x=x=\lambda^{0} x
$$

so λ^{0} is an eigenvalue of A^{0}. If we assume for inductive hypothesis that the lemma is true for n, then we have

$$
A^{n+1} x=\left(A^{n} A\right) x=A^{n}(\lambda x)=\lambda\left(A^{n} x\right)=\lambda\left(\lambda^{n} x\right)=\lambda^{n+1} x
$$

So x is an eigenvector of A^{n+1} for λ^{n+1}, and induction tell us the theorem is true for all $n \geq 0$.

Coming back to the problem, let us determine the adjacency matrix A of our graph G

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

In order to calculate the eigenvalues of A, let us solve the charateristic equation

$$
\left|\begin{array}{cccc}
-\lambda & 1 & 1 & 1 \\
1 & -\lambda & 1 & 1 \\
1 & 1 & -\lambda & 0 \\
1 & 1 & 0 & -\lambda
\end{array}\right|=0 \quad \Leftrightarrow \quad \lambda^{4}-5 \lambda^{2}-4 \lambda=0
$$

from which we obtain

$$
\lambda_{1}=\frac{1-\sqrt{17}}{2} \quad, \quad \lambda_{2}=-1 \quad, \quad \lambda_{3}=0 \quad, \quad \lambda_{4}=\frac{1+\sqrt{17}}{2}
$$

So, by Lemma 2, the eigenvalues of $A^{n}=\left(a_{i j}^{(n)}\right)$ are

$$
\lambda_{1}^{n}=\left(\frac{1-\sqrt{17}}{2}\right)^{n} \quad, \quad \lambda_{2}^{n}=(-1)^{n} \quad, \quad \lambda_{3}^{n}=0 \quad, \quad \lambda_{4}^{n}=\left(\frac{1+\sqrt{17}}{2}\right)^{n}
$$

Finally, by using the Lemma 1, we have that the number c_{n} of closed n-walks in G is given by

$$
\begin{align*}
c_{n} & =a_{11}^{(n)}+a_{22}^{(n)}+a_{33}^{(n)}+a_{44}^{(n)}=\operatorname{Trace}\left(A^{n}\right)= \\
& =\lambda_{1}^{n}+\lambda_{2}^{n}+\lambda_{3}^{n}+\lambda_{4}^{n}= \tag{2}\\
& =(-1)^{n}+\left(\frac{1-\sqrt{17}}{2}\right)^{n}+\left(\frac{1+\sqrt{17}}{2}\right)^{n}
\end{align*}
$$

It follows easily from (2) that the sequence c_{n} can be written in the following recursive form

$$
\begin{array}{lll}
c_{1}=0 \quad, \quad c_{2}=10 & , \quad c_{3}=12 \\
c_{n}=5 c_{n-2}+4 c_{n-3} & , \quad \forall n \geq 4
\end{array}
$$

The proof is complete.

