Problema U116. Let G be a K_4 complete graph without an edge. Find the number of closed walks of length n in G.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Let us call n-walk a walk of length n in G. We use the following results

LEMMA 1. If $A = (a_{ij})$ is the adjacency matrix of a graph G, then the (i, j)-entry $a_{ij}^{(n)}$ of the matrix A^n is equal to the number of n-walks that originate at vertex i and terminate at vertex j.

Proof.

We proceed by induction. The lemma is trivially true for n = 1. For inductive hypothesis, assume that the lemma holds for for n-1, i.e. assume that the (i, j) entry of the matrix $A^{n-1} = \left(a_{ij}^{(n-1)}\right)$ represent the number of the walks of length n-1 from vertex *i* to vertex *j*. The (i, j) entry of A^n is given by

$$a_{ij}^{(n)} = \sum_{k=1}^{n} a_{ik}^{(n-1)} \cdot a_{kj} \tag{1}$$

In (1), $a_{kj} = 1$ or 0 depending on whether or not there is a walk from k to j. Thus a term of sum (1) is non zero if and only if there is a n-walk from i to j, whose last edge is from k to j. If the term is not zero, its value equals the number of such edge sequences from i to j via k, where $1 \le k \le n$. Therefore (1) is equal to the number of all possible n-walks from i to j and the lemma is proven.

LEMMA 2. Let A be a square matrix, let λ be an eigenvalue of A and let $n \ge 0$ be an integer. Then λ^n is an eigenvalue of A^n .

Proof.

Let $x \neq 0$ be an eigenvector of A corresponding to the eigenvalue λ . We proceed by induction on n. Obviously for n = 0 we have

$$A^0 x = Ix = x = \lambda^0 x$$

so λ^0 is an eigenvalue of A^0 . If we assume for inductive hypothesis that the lemma is true for n, then we have

$$A^{n+1}x = (A^n A) x = A^n(\lambda x) = \lambda (A^n x) = \lambda (\lambda^n x) = \lambda^{n+1} x$$

So x is an eigenvector of A^{n+1} for λ^{n+1} , and induction tell us the theorem is true for all $n \ge 0$.

Coming back to the problem, let us determine the adjacency matrix A of our graph G

In order to calculate the eigenvalues of A, let us solve the characteristic equation

$$\begin{vmatrix} -\lambda & 1 & 1 & 1 \\ 1 & -\lambda & 1 & 1 \\ 1 & 1 & -\lambda & 0 \\ 1 & 1 & 0 & -\lambda \end{vmatrix} = 0 \quad \Leftrightarrow \quad \lambda^4 - 5\lambda^2 - 4\lambda = 0$$

from which we obtain

$$\lambda_1 = \frac{1 - \sqrt{17}}{2}$$
, $\lambda_2 = -1$, $\lambda_3 = 0$, $\lambda_4 = \frac{1 + \sqrt{17}}{2}$

So, by LEMMA 2, the eigenvalues of $A^n = \left(a_{ij}^{(n)}\right)$ are

$$\lambda_1^n = \left(\frac{1-\sqrt{17}}{2}\right)^n$$
, $\lambda_2^n = (-1)^n$, $\lambda_3^n = 0$, $\lambda_4^n = \left(\frac{1+\sqrt{17}}{2}\right)^n$

Finally, by using the LEMMA 1, we have that the number c_n of closed n-walks in G is given by

$$c_{n} = a_{11}^{(n)} + a_{22}^{(n)} + a_{33}^{(n)} + a_{44}^{(n)} = \text{Trace} (A^{n}) =$$

= $\lambda_{1}^{n} + \lambda_{2}^{n} + \lambda_{3}^{n} + \lambda_{4}^{n} =$
= $(-1)^{n} + \left(\frac{1 - \sqrt{17}}{2}\right)^{n} + \left(\frac{1 + \sqrt{17}}{2}\right)^{n}$ (2)

It follows easily from (2) that the sequence c_n can be written in the following recursive form

$$c_1 = 0$$
 , $c_2 = 10$, $c_3 = 12$
 $c_n = 5c_{n-2} + 4c_{n-3}$, $\forall n \ge 4$

The proof is complete.