Problema U139. Find the least interval containing all values of the expression

$$
E(x, y, z)=\frac{x}{x+2 y}+\frac{y}{y+2 z}+\frac{z}{z+2 x}
$$

Proposed by Dorin Andrica, "Babes-Bolyai" University, Cluj-Napoca, Romania
Solution by Ercole Suppa, Teramo, Italy
The expression $E(x, y, z)$ is unbounded above. Indeed setting up $x=n$, $y=\frac{1-n}{2}, z=0$ we have

$$
E\left(n, \frac{1-n}{2}, 0\right)=\frac{n}{n+1-n}+1=n+1 \rightarrow+\infty \text { as } n \rightarrow \infty
$$

Using the Cauchy-Schwartz inequality in Engel form we have

$$
\begin{aligned}
E(x, y, z) & =\frac{x}{x+2 y}+\frac{y}{y+2 z}+\frac{z}{z+2 x}= \\
& =\frac{x^{2}}{x^{2}+2 x y}+\frac{y^{2}}{y^{2}+2 y z}+\frac{z^{2}}{z^{2}+2 x z} \geq \\
& \geq \frac{(x+y+z)^{2}}{x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 x z}= \\
& =\frac{(x+y+z)^{2}}{(x+y+z)^{2}}=1
\end{aligned}
$$

and $E(x, y, z)$ attains the minimum value 1 as $x=y=z=1$.
Therefore least interval containing all values of $E(x, y, z)$ is $[1,+\infty)$.

